Cargando…
An Integrative Approach to the Identification of Arabidopsis and Rice Genes Involved in Xylan and Secondary Wall Development
Xylans constitute the major non-cellulosic component of plant biomass. Xylan biosynthesis is particularly pronounced in cells with secondary walls, implying that the synthesis network consists of a set of highly expressed genes in such cells. To improve the understanding of xylan biosynthesis, we pe...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2990762/ https://www.ncbi.nlm.nih.gov/pubmed/21124849 http://dx.doi.org/10.1371/journal.pone.0015481 |
_version_ | 1782192512749797376 |
---|---|
author | Oikawa, Ai Joshi, Hiren J. Rennie, Emilie A. Ebert, Berit Manisseri, Chithra Heazlewood, Joshua L. Scheller, Henrik Vibe |
author_facet | Oikawa, Ai Joshi, Hiren J. Rennie, Emilie A. Ebert, Berit Manisseri, Chithra Heazlewood, Joshua L. Scheller, Henrik Vibe |
author_sort | Oikawa, Ai |
collection | PubMed |
description | Xylans constitute the major non-cellulosic component of plant biomass. Xylan biosynthesis is particularly pronounced in cells with secondary walls, implying that the synthesis network consists of a set of highly expressed genes in such cells. To improve the understanding of xylan biosynthesis, we performed a comparative analysis of co-expression networks between Arabidopsis and rice as reference species with different wall types. Many co-expressed genes were represented by orthologs in both species, which implies common biological features, while some gene families were only found in one of the species, and therefore likely to be related to differences in their cell walls. To predict the subcellular location of the identified proteins, we developed a new method, PFANTOM (plant protein family information-based predictor for endomembrane), which was shown to perform better for proteins in the endomembrane system than other available prediction methods. Based on the combined approach of co-expression and predicted cellular localization, we propose a model for Arabidopsis and rice xylan synthesis in the Golgi apparatus and signaling from plasma membrane to nucleus for secondary cell wall differentiation. As an experimental validation of the model, we show that an Arabidopsis mutant in the PGSIP1 gene encoding one of the Golgi localized candidate proteins has a highly decreased content of glucuronic acid in secondary cell walls and substantially reduced xylan glucuronosyltransferase activity. |
format | Text |
id | pubmed-2990762 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-29907622010-12-01 An Integrative Approach to the Identification of Arabidopsis and Rice Genes Involved in Xylan and Secondary Wall Development Oikawa, Ai Joshi, Hiren J. Rennie, Emilie A. Ebert, Berit Manisseri, Chithra Heazlewood, Joshua L. Scheller, Henrik Vibe PLoS One Research Article Xylans constitute the major non-cellulosic component of plant biomass. Xylan biosynthesis is particularly pronounced in cells with secondary walls, implying that the synthesis network consists of a set of highly expressed genes in such cells. To improve the understanding of xylan biosynthesis, we performed a comparative analysis of co-expression networks between Arabidopsis and rice as reference species with different wall types. Many co-expressed genes were represented by orthologs in both species, which implies common biological features, while some gene families were only found in one of the species, and therefore likely to be related to differences in their cell walls. To predict the subcellular location of the identified proteins, we developed a new method, PFANTOM (plant protein family information-based predictor for endomembrane), which was shown to perform better for proteins in the endomembrane system than other available prediction methods. Based on the combined approach of co-expression and predicted cellular localization, we propose a model for Arabidopsis and rice xylan synthesis in the Golgi apparatus and signaling from plasma membrane to nucleus for secondary cell wall differentiation. As an experimental validation of the model, we show that an Arabidopsis mutant in the PGSIP1 gene encoding one of the Golgi localized candidate proteins has a highly decreased content of glucuronic acid in secondary cell walls and substantially reduced xylan glucuronosyltransferase activity. Public Library of Science 2010-11-23 /pmc/articles/PMC2990762/ /pubmed/21124849 http://dx.doi.org/10.1371/journal.pone.0015481 Text en This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. https://creativecommons.org/publicdomain/zero/1.0/ This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. |
spellingShingle | Research Article Oikawa, Ai Joshi, Hiren J. Rennie, Emilie A. Ebert, Berit Manisseri, Chithra Heazlewood, Joshua L. Scheller, Henrik Vibe An Integrative Approach to the Identification of Arabidopsis and Rice Genes Involved in Xylan and Secondary Wall Development |
title | An Integrative Approach to the Identification of Arabidopsis and Rice Genes Involved in Xylan and Secondary Wall Development |
title_full | An Integrative Approach to the Identification of Arabidopsis and Rice Genes Involved in Xylan and Secondary Wall Development |
title_fullStr | An Integrative Approach to the Identification of Arabidopsis and Rice Genes Involved in Xylan and Secondary Wall Development |
title_full_unstemmed | An Integrative Approach to the Identification of Arabidopsis and Rice Genes Involved in Xylan and Secondary Wall Development |
title_short | An Integrative Approach to the Identification of Arabidopsis and Rice Genes Involved in Xylan and Secondary Wall Development |
title_sort | integrative approach to the identification of arabidopsis and rice genes involved in xylan and secondary wall development |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2990762/ https://www.ncbi.nlm.nih.gov/pubmed/21124849 http://dx.doi.org/10.1371/journal.pone.0015481 |
work_keys_str_mv | AT oikawaai anintegrativeapproachtotheidentificationofarabidopsisandricegenesinvolvedinxylanandsecondarywalldevelopment AT joshihirenj anintegrativeapproachtotheidentificationofarabidopsisandricegenesinvolvedinxylanandsecondarywalldevelopment AT rennieemiliea anintegrativeapproachtotheidentificationofarabidopsisandricegenesinvolvedinxylanandsecondarywalldevelopment AT ebertberit anintegrativeapproachtotheidentificationofarabidopsisandricegenesinvolvedinxylanandsecondarywalldevelopment AT manisserichithra anintegrativeapproachtotheidentificationofarabidopsisandricegenesinvolvedinxylanandsecondarywalldevelopment AT heazlewoodjoshual anintegrativeapproachtotheidentificationofarabidopsisandricegenesinvolvedinxylanandsecondarywalldevelopment AT schellerhenrikvibe anintegrativeapproachtotheidentificationofarabidopsisandricegenesinvolvedinxylanandsecondarywalldevelopment AT oikawaai integrativeapproachtotheidentificationofarabidopsisandricegenesinvolvedinxylanandsecondarywalldevelopment AT joshihirenj integrativeapproachtotheidentificationofarabidopsisandricegenesinvolvedinxylanandsecondarywalldevelopment AT rennieemiliea integrativeapproachtotheidentificationofarabidopsisandricegenesinvolvedinxylanandsecondarywalldevelopment AT ebertberit integrativeapproachtotheidentificationofarabidopsisandricegenesinvolvedinxylanandsecondarywalldevelopment AT manisserichithra integrativeapproachtotheidentificationofarabidopsisandricegenesinvolvedinxylanandsecondarywalldevelopment AT heazlewoodjoshual integrativeapproachtotheidentificationofarabidopsisandricegenesinvolvedinxylanandsecondarywalldevelopment AT schellerhenrikvibe integrativeapproachtotheidentificationofarabidopsisandricegenesinvolvedinxylanandsecondarywalldevelopment |