Cargando…
Deciphering the Code for Retroviral Integration Target Site Selection
Upon cell invasion, retroviruses generate a DNA copy of their RNA genome and integrate retroviral cDNA within host chromosomal DNA. Integration occurs throughout the host cell genome, but target site selection is not random. Each subgroup of retrovirus is distinguished from the others by attraction...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2991247/ https://www.ncbi.nlm.nih.gov/pubmed/21124862 http://dx.doi.org/10.1371/journal.pcbi.1001008 |
_version_ | 1782192571127169024 |
---|---|
author | Santoni, Federico Andrea Hartley, Oliver Luban, Jeremy |
author_facet | Santoni, Federico Andrea Hartley, Oliver Luban, Jeremy |
author_sort | Santoni, Federico Andrea |
collection | PubMed |
description | Upon cell invasion, retroviruses generate a DNA copy of their RNA genome and integrate retroviral cDNA within host chromosomal DNA. Integration occurs throughout the host cell genome, but target site selection is not random. Each subgroup of retrovirus is distinguished from the others by attraction to particular features on chromosomes. Despite extensive efforts to identify host factors that interact with retrovirion components or chromosome features predictive of integration, little is known about how integration sites are selected. We attempted to identify markers predictive of retroviral integration by exploiting Precision-Recall methods for extracting information from highly skewed datasets to derive robust and discriminating measures of association. ChIPSeq datasets for more than 60 factors were compared with 14 retroviral integration datasets. When compared with MLV, PERV or XMRV integration sites, strong association was observed with STAT1, acetylation of H3 and H4 at several positions, and methylation of H2AZ, H3K4, and K9. By combining peaks from ChIPSeq datasets, a supermarker was identified that localized within 2 kB of 75% of MLV proviruses and detected differences in integration preferences among different cell types. The supermarker predicted the likelihood of integration within specific chromosomal regions in a cell-type specific manner, yielding probabilities for integration into proto-oncogene LMO2 identical to experimentally determined values. The supermarker thus identifies chromosomal features highly favored for retroviral integration, provides clues to the mechanism by which retrovirus integration sites are selected, and offers a tool for predicting cell-type specific proto-oncogene activation by retroviruses. |
format | Text |
id | pubmed-2991247 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-29912472010-12-01 Deciphering the Code for Retroviral Integration Target Site Selection Santoni, Federico Andrea Hartley, Oliver Luban, Jeremy PLoS Comput Biol Research Article Upon cell invasion, retroviruses generate a DNA copy of their RNA genome and integrate retroviral cDNA within host chromosomal DNA. Integration occurs throughout the host cell genome, but target site selection is not random. Each subgroup of retrovirus is distinguished from the others by attraction to particular features on chromosomes. Despite extensive efforts to identify host factors that interact with retrovirion components or chromosome features predictive of integration, little is known about how integration sites are selected. We attempted to identify markers predictive of retroviral integration by exploiting Precision-Recall methods for extracting information from highly skewed datasets to derive robust and discriminating measures of association. ChIPSeq datasets for more than 60 factors were compared with 14 retroviral integration datasets. When compared with MLV, PERV or XMRV integration sites, strong association was observed with STAT1, acetylation of H3 and H4 at several positions, and methylation of H2AZ, H3K4, and K9. By combining peaks from ChIPSeq datasets, a supermarker was identified that localized within 2 kB of 75% of MLV proviruses and detected differences in integration preferences among different cell types. The supermarker predicted the likelihood of integration within specific chromosomal regions in a cell-type specific manner, yielding probabilities for integration into proto-oncogene LMO2 identical to experimentally determined values. The supermarker thus identifies chromosomal features highly favored for retroviral integration, provides clues to the mechanism by which retrovirus integration sites are selected, and offers a tool for predicting cell-type specific proto-oncogene activation by retroviruses. Public Library of Science 2010-11-24 /pmc/articles/PMC2991247/ /pubmed/21124862 http://dx.doi.org/10.1371/journal.pcbi.1001008 Text en Santoni et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Santoni, Federico Andrea Hartley, Oliver Luban, Jeremy Deciphering the Code for Retroviral Integration Target Site Selection |
title | Deciphering the Code for Retroviral Integration Target Site Selection |
title_full | Deciphering the Code for Retroviral Integration Target Site Selection |
title_fullStr | Deciphering the Code for Retroviral Integration Target Site Selection |
title_full_unstemmed | Deciphering the Code for Retroviral Integration Target Site Selection |
title_short | Deciphering the Code for Retroviral Integration Target Site Selection |
title_sort | deciphering the code for retroviral integration target site selection |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2991247/ https://www.ncbi.nlm.nih.gov/pubmed/21124862 http://dx.doi.org/10.1371/journal.pcbi.1001008 |
work_keys_str_mv | AT santonifedericoandrea decipheringthecodeforretroviralintegrationtargetsiteselection AT hartleyoliver decipheringthecodeforretroviralintegrationtargetsiteselection AT lubanjeremy decipheringthecodeforretroviralintegrationtargetsiteselection |