Cargando…
High-Yield Expression of Heterologous [FeFe] Hydrogenases in Escherichia coli
BACKGROUND: The realization of hydrogenase-based technologies for renewable H(2) production is presently limited by the need for scalable and high-yielding methods to supply active hydrogenases and their required maturases. PRINCIPAL FINDINGS: In this report, we describe an improved Escherichia coli...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2991362/ https://www.ncbi.nlm.nih.gov/pubmed/21124800 http://dx.doi.org/10.1371/journal.pone.0015491 |
_version_ | 1782192599215374336 |
---|---|
author | Kuchenreuther, Jon M. Grady-Smith, Celestine S. Bingham, Alyssa S. George, Simon J. Cramer, Stephen P. Swartz, James R. |
author_facet | Kuchenreuther, Jon M. Grady-Smith, Celestine S. Bingham, Alyssa S. George, Simon J. Cramer, Stephen P. Swartz, James R. |
author_sort | Kuchenreuther, Jon M. |
collection | PubMed |
description | BACKGROUND: The realization of hydrogenase-based technologies for renewable H(2) production is presently limited by the need for scalable and high-yielding methods to supply active hydrogenases and their required maturases. PRINCIPAL FINDINGS: In this report, we describe an improved Escherichia coli-based expression system capable of producing 8–30 mg of purified, active [FeFe] hydrogenase per liter of culture, volumetric yields at least 10-fold greater than previously reported. Specifically, we overcame two problems associated with other in vivo production methods: low protein yields and ineffective hydrogenase maturation. The addition of glucose to the growth medium enhances anaerobic metabolism and growth during hydrogenase expression, which substantially increases total yields. Also, we combine iron and cysteine supplementation with the use of an E. coli strain upregulated for iron-sulfur cluster protein accumulation. These measures dramatically improve in vivo hydrogenase activation. Two hydrogenases, HydA1 from Chlamydomonas reinhardtii and HydA (CpI) from Clostridium pasteurianum, were produced with this improved system and subsequently purified. Biophysical characterization and FTIR spectroscopic analysis of these enzymes indicate that they harbor the H-cluster and catalyze H(2) evolution with rates comparable to those of enzymes isolated from their respective native organisms. SIGNIFICANCE: The production system we describe will facilitate basic hydrogenase investigations as well as the development of new technologies that utilize these prolific H(2)-producing enzymes. These methods can also be extended for producing and studying a variety of oxygen-sensitive iron-sulfur proteins as well as other proteins requiring anoxic environments. |
format | Text |
id | pubmed-2991362 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-29913622010-12-01 High-Yield Expression of Heterologous [FeFe] Hydrogenases in Escherichia coli Kuchenreuther, Jon M. Grady-Smith, Celestine S. Bingham, Alyssa S. George, Simon J. Cramer, Stephen P. Swartz, James R. PLoS One Research Article BACKGROUND: The realization of hydrogenase-based technologies for renewable H(2) production is presently limited by the need for scalable and high-yielding methods to supply active hydrogenases and their required maturases. PRINCIPAL FINDINGS: In this report, we describe an improved Escherichia coli-based expression system capable of producing 8–30 mg of purified, active [FeFe] hydrogenase per liter of culture, volumetric yields at least 10-fold greater than previously reported. Specifically, we overcame two problems associated with other in vivo production methods: low protein yields and ineffective hydrogenase maturation. The addition of glucose to the growth medium enhances anaerobic metabolism and growth during hydrogenase expression, which substantially increases total yields. Also, we combine iron and cysteine supplementation with the use of an E. coli strain upregulated for iron-sulfur cluster protein accumulation. These measures dramatically improve in vivo hydrogenase activation. Two hydrogenases, HydA1 from Chlamydomonas reinhardtii and HydA (CpI) from Clostridium pasteurianum, were produced with this improved system and subsequently purified. Biophysical characterization and FTIR spectroscopic analysis of these enzymes indicate that they harbor the H-cluster and catalyze H(2) evolution with rates comparable to those of enzymes isolated from their respective native organisms. SIGNIFICANCE: The production system we describe will facilitate basic hydrogenase investigations as well as the development of new technologies that utilize these prolific H(2)-producing enzymes. These methods can also be extended for producing and studying a variety of oxygen-sensitive iron-sulfur proteins as well as other proteins requiring anoxic environments. Public Library of Science 2010-11-24 /pmc/articles/PMC2991362/ /pubmed/21124800 http://dx.doi.org/10.1371/journal.pone.0015491 Text en Kuchenreuther et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Kuchenreuther, Jon M. Grady-Smith, Celestine S. Bingham, Alyssa S. George, Simon J. Cramer, Stephen P. Swartz, James R. High-Yield Expression of Heterologous [FeFe] Hydrogenases in Escherichia coli |
title | High-Yield Expression of Heterologous [FeFe] Hydrogenases in Escherichia coli
|
title_full | High-Yield Expression of Heterologous [FeFe] Hydrogenases in Escherichia coli
|
title_fullStr | High-Yield Expression of Heterologous [FeFe] Hydrogenases in Escherichia coli
|
title_full_unstemmed | High-Yield Expression of Heterologous [FeFe] Hydrogenases in Escherichia coli
|
title_short | High-Yield Expression of Heterologous [FeFe] Hydrogenases in Escherichia coli
|
title_sort | high-yield expression of heterologous [fefe] hydrogenases in escherichia coli |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2991362/ https://www.ncbi.nlm.nih.gov/pubmed/21124800 http://dx.doi.org/10.1371/journal.pone.0015491 |
work_keys_str_mv | AT kuchenreutherjonm highyieldexpressionofheterologousfefehydrogenasesinescherichiacoli AT gradysmithcelestines highyieldexpressionofheterologousfefehydrogenasesinescherichiacoli AT binghamalyssas highyieldexpressionofheterologousfefehydrogenasesinescherichiacoli AT georgesimonj highyieldexpressionofheterologousfefehydrogenasesinescherichiacoli AT cramerstephenp highyieldexpressionofheterologousfefehydrogenasesinescherichiacoli AT swartzjamesr highyieldexpressionofheterologousfefehydrogenasesinescherichiacoli |