Cargando…

Ontogeny of Numerical Abilities in Fish

BACKGROUND: It has been hypothesised that human adults, infants, and non-human primates share two non-verbal systems for enumerating objects, one for representing precisely small quantities (up to 3–4 items) and one for representing approximately larger quantities. Recent studies exploiting fish...

Descripción completa

Detalles Bibliográficos
Autores principales: Bisazza, Angelo, Piffer, Laura, Serena, Giovanna, Agrillo, Christian
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2991364/
https://www.ncbi.nlm.nih.gov/pubmed/21124802
http://dx.doi.org/10.1371/journal.pone.0015516
Descripción
Sumario:BACKGROUND: It has been hypothesised that human adults, infants, and non-human primates share two non-verbal systems for enumerating objects, one for representing precisely small quantities (up to 3–4 items) and one for representing approximately larger quantities. Recent studies exploiting fish's spontaneous tendency to join the larger group showed that their ability in numerical discrimination closely resembles that of primates but little is known as to whether these capacities are innate or acquired. METHODOLOGY/PRINCIPAL FINDINGS: We used the spontaneous tendency to join the larger shoal to study the limits of the quantity discrimination of newborn and juvenile guppies. One-day old fish chose the larger shoal when the choice was between numbers in the small quantity range, 2 vs. 3 fish, but not when they had to choose between large numbers, 4 vs. 8 or 4 vs. 12, although the numerical ratio was larger in the latter case. To investigate the relative role of maturation and experience in large number discrimination, fish were raised in pairs (with no numerical experience) or in large social groups and tested at three ages. Forty-day old guppies from both treatments were able to discriminate 4 vs. 8 fish while at 20 days this was only observed in fish grown in groups. Control experiments showed that these capacities were maintained after guppies were prevented from using non numerical perceptual variables that co-vary with numerosity. CONCLUSIONS/SIGNIFICANCE: Overall, our results suggest the ability of guppies to discriminate small numbers is innate and is displayed immediately at birth while discrimination of large numbers emerges later as a result of both maturation and social experience. This developmental dissociation suggests that fish like primates might have separate systems for small and large number representation.