Cargando…
Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences
BACKGROUND: In the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understan...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2992528/ https://www.ncbi.nlm.nih.gov/pubmed/21073690 http://dx.doi.org/10.1186/1471-2148-10-352 |
_version_ | 1782192754510528512 |
---|---|
author | Schäferhoff, Bastian Fleischmann, Andreas Fischer, Eberhard Albach, Dirk C Borsch, Thomas Heubl, Günther Müller, Kai F |
author_facet | Schäferhoff, Bastian Fleischmann, Andreas Fischer, Eberhard Albach, Dirk C Borsch, Thomas Heubl, Günther Müller, Kai F |
author_sort | Schäferhoff, Bastian |
collection | PubMed |
description | BACKGROUND: In the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understanding the evolution of these phenomena in the order, and clarifying borders of and relationships among lamialean families, has been hindered by largely unresolved trees in the past. RESULTS: Our analysis of the rapidly evolving trnK/matK, trnL-F and rps16 chloroplast regions enabled us to infer more precise phylogenetic hypotheses for the Lamiales. Relationships among the nine first-branching families in the Lamiales tree are now resolved with very strong support. Subsequent to Plocospermataceae, a clade consisting of Carlemanniaceae plus Oleaceae branches, followed by Tetrachondraceae and a newly inferred clade composed of Gesneriaceae plus Calceolariaceae, which is also supported by morphological characters. Plantaginaceae (incl. Gratioleae) and Scrophulariaceae are well separated in the backbone grade; Lamiaceae and Verbenaceae appear in distant clades, while the recently described Linderniaceae are confirmed to be monophyletic and in an isolated position. CONCLUSIONS: Confidence about deep nodes of the Lamiales tree is an important step towards understanding the evolutionary diversification of a major clade of flowering plants. The degree of resolution obtained here now provides a first opportunity to discuss the evolution of morphological and biochemical traits in Lamiales. The multiple independent evolution of the carnivorous syndrome, once in Lentibulariaceae and a second time in Byblidaceae, is strongly supported by all analyses and topological tests. The evolution of selected morphological characters such as flower symmetry is discussed. The addition of further sequence data from introns and spacers holds promise to eventually obtain a fully resolved plastid tree of Lamiales. |
format | Text |
id | pubmed-2992528 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-29925282010-11-27 Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences Schäferhoff, Bastian Fleischmann, Andreas Fischer, Eberhard Albach, Dirk C Borsch, Thomas Heubl, Günther Müller, Kai F BMC Evol Biol Research Article BACKGROUND: In the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understanding the evolution of these phenomena in the order, and clarifying borders of and relationships among lamialean families, has been hindered by largely unresolved trees in the past. RESULTS: Our analysis of the rapidly evolving trnK/matK, trnL-F and rps16 chloroplast regions enabled us to infer more precise phylogenetic hypotheses for the Lamiales. Relationships among the nine first-branching families in the Lamiales tree are now resolved with very strong support. Subsequent to Plocospermataceae, a clade consisting of Carlemanniaceae plus Oleaceae branches, followed by Tetrachondraceae and a newly inferred clade composed of Gesneriaceae plus Calceolariaceae, which is also supported by morphological characters. Plantaginaceae (incl. Gratioleae) and Scrophulariaceae are well separated in the backbone grade; Lamiaceae and Verbenaceae appear in distant clades, while the recently described Linderniaceae are confirmed to be monophyletic and in an isolated position. CONCLUSIONS: Confidence about deep nodes of the Lamiales tree is an important step towards understanding the evolutionary diversification of a major clade of flowering plants. The degree of resolution obtained here now provides a first opportunity to discuss the evolution of morphological and biochemical traits in Lamiales. The multiple independent evolution of the carnivorous syndrome, once in Lentibulariaceae and a second time in Byblidaceae, is strongly supported by all analyses and topological tests. The evolution of selected morphological characters such as flower symmetry is discussed. The addition of further sequence data from introns and spacers holds promise to eventually obtain a fully resolved plastid tree of Lamiales. BioMed Central 2010-11-12 /pmc/articles/PMC2992528/ /pubmed/21073690 http://dx.doi.org/10.1186/1471-2148-10-352 Text en Copyright ©2010 Schäferhoff et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Schäferhoff, Bastian Fleischmann, Andreas Fischer, Eberhard Albach, Dirk C Borsch, Thomas Heubl, Günther Müller, Kai F Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences |
title | Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences |
title_full | Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences |
title_fullStr | Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences |
title_full_unstemmed | Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences |
title_short | Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences |
title_sort | towards resolving lamiales relationships: insights from rapidly evolving chloroplast sequences |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2992528/ https://www.ncbi.nlm.nih.gov/pubmed/21073690 http://dx.doi.org/10.1186/1471-2148-10-352 |
work_keys_str_mv | AT schaferhoffbastian towardsresolvinglamialesrelationshipsinsightsfromrapidlyevolvingchloroplastsequences AT fleischmannandreas towardsresolvinglamialesrelationshipsinsightsfromrapidlyevolvingchloroplastsequences AT fischereberhard towardsresolvinglamialesrelationshipsinsightsfromrapidlyevolvingchloroplastsequences AT albachdirkc towardsresolvinglamialesrelationshipsinsightsfromrapidlyevolvingchloroplastsequences AT borschthomas towardsresolvinglamialesrelationshipsinsightsfromrapidlyevolvingchloroplastsequences AT heublgunther towardsresolvinglamialesrelationshipsinsightsfromrapidlyevolvingchloroplastsequences AT mullerkaif towardsresolvinglamialesrelationshipsinsightsfromrapidlyevolvingchloroplastsequences |