Cargando…
Common Variants at 10 Genomic Loci Influence Hemoglobin A(1C) Levels via Glycemic and Nonglycemic Pathways
OBJECTIVE: Glycated hemoglobin (HbA(1c)), used to monitor and diagnose diabetes, is influenced by average glycemia over a 2- to 3-month period. Genetic factors affecting expression, turnover, and abnormal glycation of hemoglobin could also be associated with increased levels of HbA(1c). We aimed to...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
American Diabetes Association
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2992787/ https://www.ncbi.nlm.nih.gov/pubmed/20858683 http://dx.doi.org/10.2337/db10-0502 |
_version_ | 1782192781925548032 |
---|---|
author | Soranzo, Nicole Sanna, Serena Wheeler, Eleanor Gieger, Christian Radke, Dörte Dupuis, Josée Bouatia-Naji, Nabila Langenberg, Claudia Prokopenko, Inga Stolerman, Elliot Sandhu, Manjinder S. Heeney, Matthew M. Devaney, Joseph M. Reilly, Muredach P. Ricketts, Sally L. |
author_facet | Soranzo, Nicole Sanna, Serena Wheeler, Eleanor Gieger, Christian Radke, Dörte Dupuis, Josée Bouatia-Naji, Nabila Langenberg, Claudia Prokopenko, Inga Stolerman, Elliot Sandhu, Manjinder S. Heeney, Matthew M. Devaney, Joseph M. Reilly, Muredach P. Ricketts, Sally L. |
author_sort | Soranzo, Nicole |
collection | PubMed |
description | OBJECTIVE: Glycated hemoglobin (HbA(1c)), used to monitor and diagnose diabetes, is influenced by average glycemia over a 2- to 3-month period. Genetic factors affecting expression, turnover, and abnormal glycation of hemoglobin could also be associated with increased levels of HbA(1c). We aimed to identify such genetic factors and investigate the extent to which they influence diabetes classification based on HbA(1c) levels. RESEARCH DESIGN AND METHODS: We studied associations with HbA(1c) in up to 46,368 nondiabetic adults of European descent from 23 genome-wide association studies (GWAS) and 8 cohorts with de novo genotyped single nucleotide polymorphisms (SNPs). We combined studies using inverse-variance meta-analysis and tested mediation by glycemia using conditional analyses. We estimated the global effect of HbA(1c) loci using a multilocus risk score, and used net reclassification to estimate genetic effects on diabetes screening. RESULTS: Ten loci reached genome-wide significant association with HbA(1c), including six new loci near FN3K (lead SNP/P value, rs1046896/P = 1.6 × 10(−26)), HFE (rs1800562/P = 2.6 × 10(−20)), TMPRSS6 (rs855791/P = 2.7 × 10(−14)), ANK1 (rs4737009/P = 6.1 × 10(−12)), SPTA1 (rs2779116/P = 2.8 × 10(−9)) and ATP11A/TUBGCP3 (rs7998202/P = 5.2 × 10(−9)), and four known HbA(1c) loci: HK1 (rs16926246/P = 3.1 × 10(−54)), MTNR1B (rs1387153/P = 4.0 × 10(−11)), GCK (rs1799884/P = 1.5 × 10(−20)) and G6PC2/ABCB11 (rs552976/P = 8.2 × 10(−18)). We show that associations with HbA(1c) are partly a function of hyperglycemia associated with 3 of the 10 loci (GCK, G6PC2 and MTNR1B). The seven nonglycemic loci accounted for a 0.19 (% HbA(1c)) difference between the extreme 10% tails of the risk score, and would reclassify ∼2% of a general white population screened for diabetes with HbA(1c). CONCLUSIONS: GWAS identified 10 genetic loci reproducibly associated with HbA(1c). Six are novel and seven map to loci where rarer variants cause hereditary anemias and iron storage disorders. Common variants at these loci likely influence HbA(1c) levels via erythrocyte biology, and confer a small but detectable reclassification of diabetes diagnosis by HbA(1c). |
format | Text |
id | pubmed-2992787 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | American Diabetes Association |
record_format | MEDLINE/PubMed |
spelling | pubmed-29927872011-12-01 Common Variants at 10 Genomic Loci Influence Hemoglobin A(1C) Levels via Glycemic and Nonglycemic Pathways Soranzo, Nicole Sanna, Serena Wheeler, Eleanor Gieger, Christian Radke, Dörte Dupuis, Josée Bouatia-Naji, Nabila Langenberg, Claudia Prokopenko, Inga Stolerman, Elliot Sandhu, Manjinder S. Heeney, Matthew M. Devaney, Joseph M. Reilly, Muredach P. Ricketts, Sally L. Diabetes Pharmacology and Therapeutics OBJECTIVE: Glycated hemoglobin (HbA(1c)), used to monitor and diagnose diabetes, is influenced by average glycemia over a 2- to 3-month period. Genetic factors affecting expression, turnover, and abnormal glycation of hemoglobin could also be associated with increased levels of HbA(1c). We aimed to identify such genetic factors and investigate the extent to which they influence diabetes classification based on HbA(1c) levels. RESEARCH DESIGN AND METHODS: We studied associations with HbA(1c) in up to 46,368 nondiabetic adults of European descent from 23 genome-wide association studies (GWAS) and 8 cohorts with de novo genotyped single nucleotide polymorphisms (SNPs). We combined studies using inverse-variance meta-analysis and tested mediation by glycemia using conditional analyses. We estimated the global effect of HbA(1c) loci using a multilocus risk score, and used net reclassification to estimate genetic effects on diabetes screening. RESULTS: Ten loci reached genome-wide significant association with HbA(1c), including six new loci near FN3K (lead SNP/P value, rs1046896/P = 1.6 × 10(−26)), HFE (rs1800562/P = 2.6 × 10(−20)), TMPRSS6 (rs855791/P = 2.7 × 10(−14)), ANK1 (rs4737009/P = 6.1 × 10(−12)), SPTA1 (rs2779116/P = 2.8 × 10(−9)) and ATP11A/TUBGCP3 (rs7998202/P = 5.2 × 10(−9)), and four known HbA(1c) loci: HK1 (rs16926246/P = 3.1 × 10(−54)), MTNR1B (rs1387153/P = 4.0 × 10(−11)), GCK (rs1799884/P = 1.5 × 10(−20)) and G6PC2/ABCB11 (rs552976/P = 8.2 × 10(−18)). We show that associations with HbA(1c) are partly a function of hyperglycemia associated with 3 of the 10 loci (GCK, G6PC2 and MTNR1B). The seven nonglycemic loci accounted for a 0.19 (% HbA(1c)) difference between the extreme 10% tails of the risk score, and would reclassify ∼2% of a general white population screened for diabetes with HbA(1c). CONCLUSIONS: GWAS identified 10 genetic loci reproducibly associated with HbA(1c). Six are novel and seven map to loci where rarer variants cause hereditary anemias and iron storage disorders. Common variants at these loci likely influence HbA(1c) levels via erythrocyte biology, and confer a small but detectable reclassification of diabetes diagnosis by HbA(1c). American Diabetes Association 2010-12 2010-09-21 /pmc/articles/PMC2992787/ /pubmed/20858683 http://dx.doi.org/10.2337/db10-0502 Text en © 2010 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details. |
spellingShingle | Pharmacology and Therapeutics Soranzo, Nicole Sanna, Serena Wheeler, Eleanor Gieger, Christian Radke, Dörte Dupuis, Josée Bouatia-Naji, Nabila Langenberg, Claudia Prokopenko, Inga Stolerman, Elliot Sandhu, Manjinder S. Heeney, Matthew M. Devaney, Joseph M. Reilly, Muredach P. Ricketts, Sally L. Common Variants at 10 Genomic Loci Influence Hemoglobin A(1C) Levels via Glycemic and Nonglycemic Pathways |
title | Common Variants at 10 Genomic Loci Influence Hemoglobin A(1C) Levels via Glycemic and Nonglycemic Pathways |
title_full | Common Variants at 10 Genomic Loci Influence Hemoglobin A(1C) Levels via Glycemic and Nonglycemic Pathways |
title_fullStr | Common Variants at 10 Genomic Loci Influence Hemoglobin A(1C) Levels via Glycemic and Nonglycemic Pathways |
title_full_unstemmed | Common Variants at 10 Genomic Loci Influence Hemoglobin A(1C) Levels via Glycemic and Nonglycemic Pathways |
title_short | Common Variants at 10 Genomic Loci Influence Hemoglobin A(1C) Levels via Glycemic and Nonglycemic Pathways |
title_sort | common variants at 10 genomic loci influence hemoglobin a(1c) levels via glycemic and nonglycemic pathways |
topic | Pharmacology and Therapeutics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2992787/ https://www.ncbi.nlm.nih.gov/pubmed/20858683 http://dx.doi.org/10.2337/db10-0502 |
work_keys_str_mv | AT soranzonicole commonvariantsat10genomiclociinfluencehemoglobina1clevelsviaglycemicandnonglycemicpathways AT sannaserena commonvariantsat10genomiclociinfluencehemoglobina1clevelsviaglycemicandnonglycemicpathways AT wheelereleanor commonvariantsat10genomiclociinfluencehemoglobina1clevelsviaglycemicandnonglycemicpathways AT giegerchristian commonvariantsat10genomiclociinfluencehemoglobina1clevelsviaglycemicandnonglycemicpathways AT radkedorte commonvariantsat10genomiclociinfluencehemoglobina1clevelsviaglycemicandnonglycemicpathways AT dupuisjosee commonvariantsat10genomiclociinfluencehemoglobina1clevelsviaglycemicandnonglycemicpathways AT bouatianajinabila commonvariantsat10genomiclociinfluencehemoglobina1clevelsviaglycemicandnonglycemicpathways AT langenbergclaudia commonvariantsat10genomiclociinfluencehemoglobina1clevelsviaglycemicandnonglycemicpathways AT prokopenkoinga commonvariantsat10genomiclociinfluencehemoglobina1clevelsviaglycemicandnonglycemicpathways AT stolermanelliot commonvariantsat10genomiclociinfluencehemoglobina1clevelsviaglycemicandnonglycemicpathways AT sandhumanjinders commonvariantsat10genomiclociinfluencehemoglobina1clevelsviaglycemicandnonglycemicpathways AT heeneymatthewm commonvariantsat10genomiclociinfluencehemoglobina1clevelsviaglycemicandnonglycemicpathways AT devaneyjosephm commonvariantsat10genomiclociinfluencehemoglobina1clevelsviaglycemicandnonglycemicpathways AT reillymuredachp commonvariantsat10genomiclociinfluencehemoglobina1clevelsviaglycemicandnonglycemicpathways AT rickettssallyl commonvariantsat10genomiclociinfluencehemoglobina1clevelsviaglycemicandnonglycemicpathways |