Cargando…

Quantification and deconvolution of asymmetric LC-MS peaks using the bi-Gaussian mixture model and statistical model selection

BACKGROUND: Liquid chromatography-mass spectrometry (LC-MS) is one of the major techniques for the quantification of metabolites in complex biological samples. Peak modeling is one of the key components in LC-MS data pre-processing. RESULTS: To quantify asymmetric peaks with high noise level, we dev...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Tianwei, Peng, Hesen
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2993707/
https://www.ncbi.nlm.nih.gov/pubmed/21073736
http://dx.doi.org/10.1186/1471-2105-11-559
Descripción
Sumario:BACKGROUND: Liquid chromatography-mass spectrometry (LC-MS) is one of the major techniques for the quantification of metabolites in complex biological samples. Peak modeling is one of the key components in LC-MS data pre-processing. RESULTS: To quantify asymmetric peaks with high noise level, we developed an estimation procedure using the bi-Gaussian function. In addition, to accurately quantify partially overlapping peaks, we developed a deconvolution method using the bi-Gaussian mixture model combined with statistical model selection. CONCLUSIONS: Using extensive simulations and real data, we demonstrated the advantage of the bi-Gaussian mixture model over the Gaussian mixture model and the method of kernel smoothing combined with signal summation in peak quantification and deconvolution. The method is implemented in the R package apLCMS: http://www.sph.emory.edu/apLCMS/.