Cargando…

Epithelial Cell Transforming Sequence 2 in Human Oral Cancer

BACKGROUND: Epithelial cell transforming sequence 2 (ECT2) is a guanine nucleotide exchange factor for Rho family GTPase, which has been implicated in the malignant phenotype of human cancers. Little is known about the effect of a high level of ECT2 in regulating oral cancer cell behavior. In this s...

Descripción completa

Detalles Bibliográficos
Autores principales: Iyoda, Manabu, Kasamatsu, Atsushi, Ishigami, Takashi, Nakashima, Dai, Endo-Sakamoto, Yosuke, Ogawara, Katsunori, Shiiba, Masashi, Tanzawa, Hideki, Uzawa, Katsuhiro
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2993930/
https://www.ncbi.nlm.nih.gov/pubmed/21124766
http://dx.doi.org/10.1371/journal.pone.0014082
Descripción
Sumario:BACKGROUND: Epithelial cell transforming sequence 2 (ECT2) is a guanine nucleotide exchange factor for Rho family GTPase, which has been implicated in the malignant phenotype of human cancers. Little is known about the effect of a high level of ECT2 in regulating oral cancer cell behavior. In this study, we investigated the involvement of ECT2 in oral squamous cell carcinoma (OSCC). METHODOLOGY/PRINCIPAL FINDINGS: We analyzed ECT2 expression in OSCC-derived cell lines and primary OSCCs compared with matched normal tissue (n = 96) by quantitative reverse transcriptase-polymerase chain reaction, Western blot, and immunohistochemistry. We then evaluated the correlation between the ECT2 expression status in primary OSCCs and the clinicopathological features. ECT2 expression was significantly up-regulated in OSCCs in vitro and in vivo (p<0.05). Among the clinical variables analyzed, higher ECT2 expression also was associated with the TNM stage grading (p<0.05). When we performed functional analyses of ECT2 in OSCC-derived cells using the shRNA system, the cellular proliferation of the ECT2 knockdown cells decreased significantly compared with the control cells (p<0.05). Cell cycle analysis by flow cytometry showed arrest of cell cycle progression at the G1 phase in the ECT2 knockdown cells. We also found up-regulation of the Cip/Kip family of the cyclin-dependent kinase inhibitors, p21(cip1) and p27(kip1), and down-regulation of cyclin D1, cyclin E, and CDK4. These data suggested that the elevated Cip/Kip family induced inhibition of the cyclin D1-CDK complex activity leading to cell cycle arrest at the G1 phase. CONCLUSIONS/SIGNIFICANCE: Our results proposed for the first time that ECT2 is an indicator of cellular proliferation in OSCCs and that ECT2 might be a potential therapeutic target for the development of new treatments for OSCCs.