Cargando…

Saloplastic Macroporous Polyelectrolyte Complexes: Cartilage Mimics

[Image: see text] Complexes of sodium poly(4-styrenesulfonate) (NaPSS) and poly(diallyldimethylammonium chloride) (PDADMAC) were formed on mixing equimolar solutions in high salt concentration. Under ultracentrifugal fields, the complex precipitates were transformed into compact polyelectrolyte comp...

Descripción completa

Detalles Bibliográficos
Autores principales: Hariri, Haifa H., Schlenoff, Joseph B.
Formato: Texto
Lenguaje:English
Publicado: American Chemical Society 2010
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2994323/
https://www.ncbi.nlm.nih.gov/pubmed/21132107
http://dx.doi.org/10.1021/ma1012978
Descripción
Sumario:[Image: see text] Complexes of sodium poly(4-styrenesulfonate) (NaPSS) and poly(diallyldimethylammonium chloride) (PDADMAC) were formed on mixing equimolar solutions in high salt concentration. Under ultracentrifugal fields, the complex precipitates were transformed into compact polyelectrolyte complexes (CoPECs), which showed extensive porosity. The mechanical properties of CoPECS make them attractive for bioimplants and tissue engineering applications. Free NaPSS chains in the closed pores of CoPECs create excess osmotic pressure, which controls the pore size and contributes to the mechanical resistance of the material. The mechanical properties of CoPECs, modulated by the ionic strength of the doping medium, were studied by uniaxial tensile testing and the stress−strain data were fit to a three-element Maxwell model which revealed at least two regimes of stress relaxation.