Cargando…
NetMHCIIpan-2.0 - Improved pan-specific HLA-DR predictions using a novel concurrent alignment and weight optimization training procedure
BACKGROUND: Binding of peptides to Major Histocompatibility class II (MHC-II) molecules play a central role in governing responses of the adaptive immune system. MHC-II molecules sample peptides from the extracellular space allowing the immune system to detect the presence of foreign microbes from t...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2994798/ https://www.ncbi.nlm.nih.gov/pubmed/21073747 http://dx.doi.org/10.1186/1745-7580-6-9 |
Sumario: | BACKGROUND: Binding of peptides to Major Histocompatibility class II (MHC-II) molecules play a central role in governing responses of the adaptive immune system. MHC-II molecules sample peptides from the extracellular space allowing the immune system to detect the presence of foreign microbes from this compartment. Predicting which peptides bind to an MHC-II molecule is therefore of pivotal importance for understanding the immune response and its effect on host-pathogen interactions. The experimental cost associated with characterizing the binding motif of an MHC-II molecule is significant and large efforts have therefore been placed in developing accurate computer methods capable of predicting this binding event. Prediction of peptide binding to MHC-II is complicated by the open binding cleft of the MHC-II molecule, allowing binding of peptides extending out of the binding groove. Moreover, the genes encoding the MHC molecules are immensely diverse leading to a large set of different MHC molecules each potentially binding a unique set of peptides. Characterizing each MHC-II molecule using peptide-screening binding assays is hence not a viable option. RESULTS: Here, we present an MHC-II binding prediction algorithm aiming at dealing with these challenges. The method is a pan-specific version of the earlier published allele-specific NN-align algorithm and does not require any pre-alignment of the input data. This allows the method to benefit also from information from alleles covered by limited binding data. The method is evaluated on a large and diverse set of benchmark data, and is shown to significantly out-perform state-of-the-art MHC-II prediction methods. In particular, the method is found to boost the performance for alleles characterized by limited binding data where conventional allele-specific methods tend to achieve poor prediction accuracy. CONCLUSIONS: The method thus shows great potential for efficient boosting the accuracy of MHC-II binding prediction, as accurate predictions can be obtained for novel alleles at highly reduced experimental costs. Pan-specific binding predictions can be obtained for all alleles with know protein sequence and the method can benefit by including data in the training from alleles even where only few binders are known. The method and benchmark data are available at http://www.cbs.dtu.dk/services/NetMHCIIpan-2.0 |
---|