Cargando…

MuD: an interactive web server for the prediction of non-neutral substitutions using protein structural data

Detalles Bibliográficos
Autores principales: Wainreb, Gilad, Ashkenazy, Haim, Bromberg, Yana, Starovolsky-Shitrit, Alina, Haliloglu, Turkan, Ruppin, Eytan, Avraham, Karen B., Rost, Burkhard, Ben-Tal, Nir
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2995036/
http://dx.doi.org/10.1093/nar/gkq1208
_version_ 1782193035290869760
author Wainreb, Gilad
Ashkenazy, Haim
Bromberg, Yana
Starovolsky-Shitrit, Alina
Haliloglu, Turkan
Ruppin, Eytan
Avraham, Karen B.
Rost, Burkhard
Ben-Tal, Nir
author_facet Wainreb, Gilad
Ashkenazy, Haim
Bromberg, Yana
Starovolsky-Shitrit, Alina
Haliloglu, Turkan
Ruppin, Eytan
Avraham, Karen B.
Rost, Burkhard
Ben-Tal, Nir
author_sort Wainreb, Gilad
collection PubMed
description
format Text
id pubmed-2995036
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-29950362010-12-01 MuD: an interactive web server for the prediction of non-neutral substitutions using protein structural data Wainreb, Gilad Ashkenazy, Haim Bromberg, Yana Starovolsky-Shitrit, Alina Haliloglu, Turkan Ruppin, Eytan Avraham, Karen B. Rost, Burkhard Ben-Tal, Nir Nucleic Acids Res Corrigendum Oxford University Press 2010-11 2010-11-23 /pmc/articles/PMC2995036/ http://dx.doi.org/10.1093/nar/gkq1208 Text en © The Author(s) 2010. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/2.5 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Corrigendum
Wainreb, Gilad
Ashkenazy, Haim
Bromberg, Yana
Starovolsky-Shitrit, Alina
Haliloglu, Turkan
Ruppin, Eytan
Avraham, Karen B.
Rost, Burkhard
Ben-Tal, Nir
MuD: an interactive web server for the prediction of non-neutral substitutions using protein structural data
title MuD: an interactive web server for the prediction of non-neutral substitutions using protein structural data
title_full MuD: an interactive web server for the prediction of non-neutral substitutions using protein structural data
title_fullStr MuD: an interactive web server for the prediction of non-neutral substitutions using protein structural data
title_full_unstemmed MuD: an interactive web server for the prediction of non-neutral substitutions using protein structural data
title_short MuD: an interactive web server for the prediction of non-neutral substitutions using protein structural data
title_sort mud: an interactive web server for the prediction of non-neutral substitutions using protein structural data
topic Corrigendum
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2995036/
http://dx.doi.org/10.1093/nar/gkq1208
work_keys_str_mv AT wainrebgilad mudaninteractivewebserverforthepredictionofnonneutralsubstitutionsusingproteinstructuraldata
AT ashkenazyhaim mudaninteractivewebserverforthepredictionofnonneutralsubstitutionsusingproteinstructuraldata
AT brombergyana mudaninteractivewebserverforthepredictionofnonneutralsubstitutionsusingproteinstructuraldata
AT starovolskyshitritalina mudaninteractivewebserverforthepredictionofnonneutralsubstitutionsusingproteinstructuraldata
AT halilogluturkan mudaninteractivewebserverforthepredictionofnonneutralsubstitutionsusingproteinstructuraldata
AT ruppineytan mudaninteractivewebserverforthepredictionofnonneutralsubstitutionsusingproteinstructuraldata
AT avrahamkarenb mudaninteractivewebserverforthepredictionofnonneutralsubstitutionsusingproteinstructuraldata
AT rostburkhard mudaninteractivewebserverforthepredictionofnonneutralsubstitutionsusingproteinstructuraldata
AT bentalnir mudaninteractivewebserverforthepredictionofnonneutralsubstitutionsusingproteinstructuraldata