Cargando…
Gene Expression Network Reconstruction by Convex Feature Selection when Incorporating Genetic Perturbations
Cellular gene expression measurements contain regulatory information that can be used to discover novel network relationships. Here, we present a new algorithm for network reconstruction powered by the adaptive lasso, a theoretically and empirically well-behaved method for selecting the regulatory f...
Autores principales: | Logsdon, Benjamin A., Mezey, Jason |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2996324/ https://www.ncbi.nlm.nih.gov/pubmed/21152011 http://dx.doi.org/10.1371/journal.pcbi.1001014 |
Ejemplares similares
-
Mouse obesity network reconstruction with a variational Bayes algorithm to employ aggressive false positive control
por: Logsdon, Benjamin A, et al.
Publicado: (2012) -
Identifying Network Perturbation in Cancer
por: Grechkin, Maxim, et al.
Publicado: (2016) -
Information-incorporated sparse convex clustering for disease subtyping
por: Zhang, Xiaoyu, et al.
Publicado: (2023) -
Optimization of Sparse Cross Array Synthesis via Perturbed Convex Optimization
por: Gu, Boxuan, et al.
Publicado: (2020) -
A variational Bayes algorithm for fast and accurate multiple locus genome-wide association analysis
por: Logsdon, Benjamin A, et al.
Publicado: (2010)