Cargando…
The G Protein regulators EGL-10 and EAT-16, the G(i)α GOA-1 and the G(q)α EGL-30 modulate the response of the C. elegans ASH polymodal nociceptive sensory neurons to repellents
BACKGROUND: Polymodal, nociceptive sensory neurons are key cellular elements of the way animals sense aversive and painful stimuli. In Caenorhabditis elegans, the polymodal nociceptive ASH sensory neurons detect aversive stimuli and release glutamate to generate avoidance responses. They are thus us...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2996360/ https://www.ncbi.nlm.nih.gov/pubmed/21070627 http://dx.doi.org/10.1186/1741-7007-8-138 |
_version_ | 1782193192578318336 |
---|---|
author | Esposito, Giovanni Amoroso, Maria R Bergamasco, Carmela Di Schiavi, Elia Bazzicalupo, Paolo |
author_facet | Esposito, Giovanni Amoroso, Maria R Bergamasco, Carmela Di Schiavi, Elia Bazzicalupo, Paolo |
author_sort | Esposito, Giovanni |
collection | PubMed |
description | BACKGROUND: Polymodal, nociceptive sensory neurons are key cellular elements of the way animals sense aversive and painful stimuli. In Caenorhabditis elegans, the polymodal nociceptive ASH sensory neurons detect aversive stimuli and release glutamate to generate avoidance responses. They are thus useful models for the nociceptive neurons of mammals. While several molecules affecting signal generation and transduction in ASH have been identified, less is known about transmission of the signal from ASH to downstream neurons and about the molecules involved in its modulation. RESULTS: We discovered that the regulator of G protein signalling (RGS) protein, EGL-10, is required for appropriate avoidance responses to noxious stimuli sensed by ASH. As it does for other behaviours in which it is also involved, egl-10 interacts genetically with the G(o/i)α protein GOA-1, the G(q)α protein EGL-30 and the RGS EAT-16. Genetic, behavioural and Ca(2+ )imaging analyses of ASH neurons in live animals demonstrate that, within ASH, EGL-10 and GOA-1 act downstream of stimulus-evoked signal transduction and of the main transduction channel OSM-9. EGL-30 instead appears to act upstream by regulating Ca(2+ )transients in response to aversive stimuli. Analysis of the delay in the avoidance response, of the frequency of spontaneous inversions and of the genetic interaction with the diacylglycerol kinase gene, dgk-1, indicate that EGL-10 and GOA-1 do not affect signal transduction and neuronal depolarization in response to aversive stimuli but act in ASH to modulate downstream transmission of the signal. CONCLUSIONS: The ASH polymodal nociceptive sensory neurons can be modulated not only in their capacity to detect stimuli but also in the efficiency with which they respond to them. The Gα and RGS molecules studied in this work are conserved in evolution and, for each of them, mammalian orthologs can be identified. The discovery of their role in the modulation of signal transduction and signal transmission of nociceptors may help us to understand how pain is generated and how its control can go astray (such as chronic pain) and may suggest new pain control therapies. |
format | Text |
id | pubmed-2996360 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-29963602010-12-03 The G Protein regulators EGL-10 and EAT-16, the G(i)α GOA-1 and the G(q)α EGL-30 modulate the response of the C. elegans ASH polymodal nociceptive sensory neurons to repellents Esposito, Giovanni Amoroso, Maria R Bergamasco, Carmela Di Schiavi, Elia Bazzicalupo, Paolo BMC Biol Research Article BACKGROUND: Polymodal, nociceptive sensory neurons are key cellular elements of the way animals sense aversive and painful stimuli. In Caenorhabditis elegans, the polymodal nociceptive ASH sensory neurons detect aversive stimuli and release glutamate to generate avoidance responses. They are thus useful models for the nociceptive neurons of mammals. While several molecules affecting signal generation and transduction in ASH have been identified, less is known about transmission of the signal from ASH to downstream neurons and about the molecules involved in its modulation. RESULTS: We discovered that the regulator of G protein signalling (RGS) protein, EGL-10, is required for appropriate avoidance responses to noxious stimuli sensed by ASH. As it does for other behaviours in which it is also involved, egl-10 interacts genetically with the G(o/i)α protein GOA-1, the G(q)α protein EGL-30 and the RGS EAT-16. Genetic, behavioural and Ca(2+ )imaging analyses of ASH neurons in live animals demonstrate that, within ASH, EGL-10 and GOA-1 act downstream of stimulus-evoked signal transduction and of the main transduction channel OSM-9. EGL-30 instead appears to act upstream by regulating Ca(2+ )transients in response to aversive stimuli. Analysis of the delay in the avoidance response, of the frequency of spontaneous inversions and of the genetic interaction with the diacylglycerol kinase gene, dgk-1, indicate that EGL-10 and GOA-1 do not affect signal transduction and neuronal depolarization in response to aversive stimuli but act in ASH to modulate downstream transmission of the signal. CONCLUSIONS: The ASH polymodal nociceptive sensory neurons can be modulated not only in their capacity to detect stimuli but also in the efficiency with which they respond to them. The Gα and RGS molecules studied in this work are conserved in evolution and, for each of them, mammalian orthologs can be identified. The discovery of their role in the modulation of signal transduction and signal transmission of nociceptors may help us to understand how pain is generated and how its control can go astray (such as chronic pain) and may suggest new pain control therapies. BioMed Central 2010-11-11 /pmc/articles/PMC2996360/ /pubmed/21070627 http://dx.doi.org/10.1186/1741-7007-8-138 Text en Copyright ©2010 Esposito et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Esposito, Giovanni Amoroso, Maria R Bergamasco, Carmela Di Schiavi, Elia Bazzicalupo, Paolo The G Protein regulators EGL-10 and EAT-16, the G(i)α GOA-1 and the G(q)α EGL-30 modulate the response of the C. elegans ASH polymodal nociceptive sensory neurons to repellents |
title | The G Protein regulators EGL-10 and EAT-16, the G(i)α GOA-1 and the G(q)α EGL-30 modulate the response of the C. elegans ASH polymodal nociceptive sensory neurons to repellents |
title_full | The G Protein regulators EGL-10 and EAT-16, the G(i)α GOA-1 and the G(q)α EGL-30 modulate the response of the C. elegans ASH polymodal nociceptive sensory neurons to repellents |
title_fullStr | The G Protein regulators EGL-10 and EAT-16, the G(i)α GOA-1 and the G(q)α EGL-30 modulate the response of the C. elegans ASH polymodal nociceptive sensory neurons to repellents |
title_full_unstemmed | The G Protein regulators EGL-10 and EAT-16, the G(i)α GOA-1 and the G(q)α EGL-30 modulate the response of the C. elegans ASH polymodal nociceptive sensory neurons to repellents |
title_short | The G Protein regulators EGL-10 and EAT-16, the G(i)α GOA-1 and the G(q)α EGL-30 modulate the response of the C. elegans ASH polymodal nociceptive sensory neurons to repellents |
title_sort | g protein regulators egl-10 and eat-16, the g(i)α goa-1 and the g(q)α egl-30 modulate the response of the c. elegans ash polymodal nociceptive sensory neurons to repellents |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2996360/ https://www.ncbi.nlm.nih.gov/pubmed/21070627 http://dx.doi.org/10.1186/1741-7007-8-138 |
work_keys_str_mv | AT espositogiovanni thegproteinregulatorsegl10andeat16thegiagoa1andthegqaegl30modulatetheresponseofthecelegansashpolymodalnociceptivesensoryneuronstorepellents AT amorosomariar thegproteinregulatorsegl10andeat16thegiagoa1andthegqaegl30modulatetheresponseofthecelegansashpolymodalnociceptivesensoryneuronstorepellents AT bergamascocarmela thegproteinregulatorsegl10andeat16thegiagoa1andthegqaegl30modulatetheresponseofthecelegansashpolymodalnociceptivesensoryneuronstorepellents AT dischiavielia thegproteinregulatorsegl10andeat16thegiagoa1andthegqaegl30modulatetheresponseofthecelegansashpolymodalnociceptivesensoryneuronstorepellents AT bazzicalupopaolo thegproteinregulatorsegl10andeat16thegiagoa1andthegqaegl30modulatetheresponseofthecelegansashpolymodalnociceptivesensoryneuronstorepellents AT espositogiovanni gproteinregulatorsegl10andeat16thegiagoa1andthegqaegl30modulatetheresponseofthecelegansashpolymodalnociceptivesensoryneuronstorepellents AT amorosomariar gproteinregulatorsegl10andeat16thegiagoa1andthegqaegl30modulatetheresponseofthecelegansashpolymodalnociceptivesensoryneuronstorepellents AT bergamascocarmela gproteinregulatorsegl10andeat16thegiagoa1andthegqaegl30modulatetheresponseofthecelegansashpolymodalnociceptivesensoryneuronstorepellents AT dischiavielia gproteinregulatorsegl10andeat16thegiagoa1andthegqaegl30modulatetheresponseofthecelegansashpolymodalnociceptivesensoryneuronstorepellents AT bazzicalupopaolo gproteinregulatorsegl10andeat16thegiagoa1andthegqaegl30modulatetheresponseofthecelegansashpolymodalnociceptivesensoryneuronstorepellents |