Cargando…
Identification of Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a binding protein for a 68-kDa Bacillus thuringiensis parasporal protein cytotoxic against leukaemic cells
BACKGROUND: Bacillus thuringiensis (Bt), an ubiquitous gram-positive spore-forming bacterium forms parasporal proteins during the stationary phase of its growth. Recent findings of selective human cancer cell-killing activity in non-insecticidal Bt isolates resulted in a new category of Bt paraspora...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2996362/ https://www.ncbi.nlm.nih.gov/pubmed/21073742 http://dx.doi.org/10.1186/1423-0127-17-86 |
_version_ | 1782193193112043520 |
---|---|
author | Krishnan, Kanakeswary Ker, Jeremy Er An Mohammed, Shar Mariam Nadarajah, Vishna Devi |
author_facet | Krishnan, Kanakeswary Ker, Jeremy Er An Mohammed, Shar Mariam Nadarajah, Vishna Devi |
author_sort | Krishnan, Kanakeswary |
collection | PubMed |
description | BACKGROUND: Bacillus thuringiensis (Bt), an ubiquitous gram-positive spore-forming bacterium forms parasporal proteins during the stationary phase of its growth. Recent findings of selective human cancer cell-killing activity in non-insecticidal Bt isolates resulted in a new category of Bt parasporal protein called parasporin. However, little is known about the receptor molecules that bind parasporins and the mechanism of anti-cancer activity. A Malaysian Bt isolate, designated Bt18 produces parasporal protein that exhibit preferential cytotoxic activity for human leukaemic T cells (CEM-SS) but is non-cytotoxic to normal T cells or other cancer cell lines such as human cervical cancer (HeLa), human breast cancer (MCF-7) and colon cancer (HT-29) suggesting properties similar to parasporin. In this study we aim to identify the binding protein for Bt18 in human leukaemic T cells. METHODS: Bt18 parasporal protein was separated using Mono Q anion exchange column attached to a HPLC system and antibody was raised against the purified 68-kDa parasporal protein. Receptor binding assay was used to detect the binding protein for Bt18 parasporal protein in CEM-SS cells and the identified protein was sent for N-terminal sequencing. NCBI protein BLAST was used to analyse the protein sequence. Double immunofluorescence staining techniques was applied to localise Bt18 and binding protein on CEM-SS cell. RESULTS: Anion exchange separation of Bt18 parasporal protein yielded a 68-kDa parasporal protein with specific cytotoxic activity. Polyclonal IgG (anti-Bt18) for the 68-kDa parasporal protein was successfully raised and purified. Receptor binding assay showed that Bt18 parasporal protein bound to a 36-kDa protein from the CEM-SS cells lysate. N-terminal amino acid sequence of the 36-kDa protein was GKVKVGVNGFGRIGG. NCBI protein BLAST revealed that the binding protein was Glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Double immunofluorescence staining showed co-localisation of Bt18 and GAPDH on the plasma membrane of the CEM-SS cells. CONCLUSIONS: GAPDH has been well known as a glycolytic enzyme, but recently GAPDH was discovered to have roles in apoptosis and carcinogenesis. Pre-incubation of anti-GAPDH antibody with CEM-SS cells decreases binding of Bt18 to the susceptible cells. Based on a qualitative analysis of the immunoblot and immunofluorescence results, GAPDH was identified as a binding protein on the plasma membrane of CEM-SS cells for Bt18 parasporal protein. |
format | Text |
id | pubmed-2996362 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-29963622010-12-03 Identification of Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a binding protein for a 68-kDa Bacillus thuringiensis parasporal protein cytotoxic against leukaemic cells Krishnan, Kanakeswary Ker, Jeremy Er An Mohammed, Shar Mariam Nadarajah, Vishna Devi J Biomed Sci Research BACKGROUND: Bacillus thuringiensis (Bt), an ubiquitous gram-positive spore-forming bacterium forms parasporal proteins during the stationary phase of its growth. Recent findings of selective human cancer cell-killing activity in non-insecticidal Bt isolates resulted in a new category of Bt parasporal protein called parasporin. However, little is known about the receptor molecules that bind parasporins and the mechanism of anti-cancer activity. A Malaysian Bt isolate, designated Bt18 produces parasporal protein that exhibit preferential cytotoxic activity for human leukaemic T cells (CEM-SS) but is non-cytotoxic to normal T cells or other cancer cell lines such as human cervical cancer (HeLa), human breast cancer (MCF-7) and colon cancer (HT-29) suggesting properties similar to parasporin. In this study we aim to identify the binding protein for Bt18 in human leukaemic T cells. METHODS: Bt18 parasporal protein was separated using Mono Q anion exchange column attached to a HPLC system and antibody was raised against the purified 68-kDa parasporal protein. Receptor binding assay was used to detect the binding protein for Bt18 parasporal protein in CEM-SS cells and the identified protein was sent for N-terminal sequencing. NCBI protein BLAST was used to analyse the protein sequence. Double immunofluorescence staining techniques was applied to localise Bt18 and binding protein on CEM-SS cell. RESULTS: Anion exchange separation of Bt18 parasporal protein yielded a 68-kDa parasporal protein with specific cytotoxic activity. Polyclonal IgG (anti-Bt18) for the 68-kDa parasporal protein was successfully raised and purified. Receptor binding assay showed that Bt18 parasporal protein bound to a 36-kDa protein from the CEM-SS cells lysate. N-terminal amino acid sequence of the 36-kDa protein was GKVKVGVNGFGRIGG. NCBI protein BLAST revealed that the binding protein was Glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Double immunofluorescence staining showed co-localisation of Bt18 and GAPDH on the plasma membrane of the CEM-SS cells. CONCLUSIONS: GAPDH has been well known as a glycolytic enzyme, but recently GAPDH was discovered to have roles in apoptosis and carcinogenesis. Pre-incubation of anti-GAPDH antibody with CEM-SS cells decreases binding of Bt18 to the susceptible cells. Based on a qualitative analysis of the immunoblot and immunofluorescence results, GAPDH was identified as a binding protein on the plasma membrane of CEM-SS cells for Bt18 parasporal protein. BioMed Central 2010-11-13 /pmc/articles/PMC2996362/ /pubmed/21073742 http://dx.doi.org/10.1186/1423-0127-17-86 Text en Copyright ©2010 Krishnan et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Krishnan, Kanakeswary Ker, Jeremy Er An Mohammed, Shar Mariam Nadarajah, Vishna Devi Identification of Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a binding protein for a 68-kDa Bacillus thuringiensis parasporal protein cytotoxic against leukaemic cells |
title | Identification of Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a binding protein for a 68-kDa Bacillus thuringiensis parasporal protein cytotoxic against leukaemic cells |
title_full | Identification of Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a binding protein for a 68-kDa Bacillus thuringiensis parasporal protein cytotoxic against leukaemic cells |
title_fullStr | Identification of Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a binding protein for a 68-kDa Bacillus thuringiensis parasporal protein cytotoxic against leukaemic cells |
title_full_unstemmed | Identification of Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a binding protein for a 68-kDa Bacillus thuringiensis parasporal protein cytotoxic against leukaemic cells |
title_short | Identification of Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a binding protein for a 68-kDa Bacillus thuringiensis parasporal protein cytotoxic against leukaemic cells |
title_sort | identification of glyceraldehyde-3-phosphate dehydrogenase (gapdh) as a binding protein for a 68-kda bacillus thuringiensis parasporal protein cytotoxic against leukaemic cells |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2996362/ https://www.ncbi.nlm.nih.gov/pubmed/21073742 http://dx.doi.org/10.1186/1423-0127-17-86 |
work_keys_str_mv | AT krishnankanakeswary identificationofglyceraldehyde3phosphatedehydrogenasegapdhasabindingproteinfora68kdabacillusthuringiensisparasporalproteincytotoxicagainstleukaemiccells AT kerjeremyeran identificationofglyceraldehyde3phosphatedehydrogenasegapdhasabindingproteinfora68kdabacillusthuringiensisparasporalproteincytotoxicagainstleukaemiccells AT mohammedsharmariam identificationofglyceraldehyde3phosphatedehydrogenasegapdhasabindingproteinfora68kdabacillusthuringiensisparasporalproteincytotoxicagainstleukaemiccells AT nadarajahvishnadevi identificationofglyceraldehyde3phosphatedehydrogenasegapdhasabindingproteinfora68kdabacillusthuringiensisparasporalproteincytotoxicagainstleukaemiccells |