Cargando…
Influence of inverse dynamics methods on the calculation of inter-segmental moments in vertical jumping and weightlifting
BACKGROUND: A vast number of biomechanical studies have employed inverse dynamics methods to calculate inter-segmental moments during movement. Although all inverse dynamics methods are rooted in classical mechanics and thus theoretically the same, there exist a number of distinct computational meth...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2996399/ https://www.ncbi.nlm.nih.gov/pubmed/21083893 http://dx.doi.org/10.1186/1475-925X-9-74 |
Sumario: | BACKGROUND: A vast number of biomechanical studies have employed inverse dynamics methods to calculate inter-segmental moments during movement. Although all inverse dynamics methods are rooted in classical mechanics and thus theoretically the same, there exist a number of distinct computational methods. Recent research has demonstrated a key influence of the dynamics computation of the inverse dynamics method on the calculated moments, despite the theoretical equivalence of the methods. The purpose of this study was therefore to explore the influence of the choice of inverse dynamics on the calculation of inter-segmental moments. METHODS: An inverse dynamics analysis was performed to analyse vertical jumping and weightlifting movements using two distinct methods. The first method was the traditional inverse dynamics approach, in this study characterized as the 3 step method, where inter-segmental moments were calculated in the local coordinate system of each segment, thus requiring multiple coordinate system transformations. The second method (the 1 step method) was the recently proposed approach based on wrench notation that allows all calculations to be performed in the global coordinate system. In order to best compare the effect of the inverse dynamics computation a number of the key assumptions and methods were harmonized, in particular unit quaternions were used to parameterize rotation in both methods in order to standardize the kinematics. RESULTS: Mean peak inter-segmental moments calculated by the two methods were found to agree to 2 decimal places in all cases and were not significantly different (p > 0.05). Equally the normalized dispersions of the two methods were small. CONCLUSIONS: In contrast to previously documented research the difference between the two methods was found to be negligible. This study demonstrates that the 1 and 3 step method are computationally equivalent and can thus be used interchangeably in musculoskeletal modelling technology. It is important that future work clarifies the influence of the other inverse dynamics methods on the calculation of inter-segmental moments. Equally future work is needed to explore the sensitivity of kinematics computations to the choice of rotation parameterization. |
---|