Cargando…

Comparative genomics reveals a functional thyroid-specific element in the far upstream region of the PAX8 gene

BACKGROUND: The molecular mechanisms leading to a fully differentiated thyrocite are still object of intense study even if it is well known that thyroglobulin, thyroperoxidase, NIS and TSHr are the marker genes of thyroid differentiation. It is also well known that Pax8, TTF-1, Foxe1 and Hhex are th...

Descripción completa

Detalles Bibliográficos
Autores principales: Nitsch, Roberto, Di Dato, Valeria, di Gennaro, Alessandra, de Cristofaro, Tiziana, Abbondante, Serena, De Felice, Mario, Zannini, Mariastella, Di Lauro, Roberto
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2996967/
https://www.ncbi.nlm.nih.gov/pubmed/20470391
http://dx.doi.org/10.1186/1471-2164-11-306
_version_ 1782193246066180096
author Nitsch, Roberto
Di Dato, Valeria
di Gennaro, Alessandra
de Cristofaro, Tiziana
Abbondante, Serena
De Felice, Mario
Zannini, Mariastella
Di Lauro, Roberto
author_facet Nitsch, Roberto
Di Dato, Valeria
di Gennaro, Alessandra
de Cristofaro, Tiziana
Abbondante, Serena
De Felice, Mario
Zannini, Mariastella
Di Lauro, Roberto
author_sort Nitsch, Roberto
collection PubMed
description BACKGROUND: The molecular mechanisms leading to a fully differentiated thyrocite are still object of intense study even if it is well known that thyroglobulin, thyroperoxidase, NIS and TSHr are the marker genes of thyroid differentiation. It is also well known that Pax8, TTF-1, Foxe1 and Hhex are the thyroid-enriched transcription factors responsible for the expression of the above genes, thus are responsible for the differentiated thyroid phenotype. In particular, the role of Pax8 in the fully developed thyroid gland was studied in depth and it was established that it plays a key role in thyroid development and differentiation. However, to date the bases for the thyroid-enriched expression of this transcription factor have not been unraveled yet. Here, we report the identification and characterization of a functional thyroid-specific enhancer element located far upstream of the Pax8 gene. RESULTS: We hypothesized that regulatory cis-acting elements are conserved among mammalian genes. Comparison of a genomic region extending for about 100 kb at the 5'-flanking region of the mouse and human Pax8 gene revealed several conserved regions that were tested for enhancer activity in thyroid and non-thyroid cells. Using this approach we identified one putative thyroid-specific regulatory element located 84.6 kb upstream of the Pax8 transcription start site. The in silico data were verified by promoter-reporter assays in thyroid and non-thyroid cells. Interestingly, the identified far upstream element manifested a very high transcriptional activity in the thyroid cell line PC Cl3, but showed no activity in HeLa cells. In addition, the data here reported indicate that the thyroid-enriched transcription factor TTF-1 is able to bind in vitro and in vivo the Pax8 far upstream element, and is capable to activate transcription from it. CONCLUSIONS: Results of this study reveal the presence of a thyroid-specific regulatory element in the 5' upstream region of the Pax8 gene. The identification of this regulatory element represents the first step in the investigation of upstream regulatory mechanisms that control Pax8 transcription during thyroid differentiation and are relevant to further studies on Pax8 as a candidate gene for thyroid dysgenesis.
format Text
id pubmed-2996967
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-29969672010-12-07 Comparative genomics reveals a functional thyroid-specific element in the far upstream region of the PAX8 gene Nitsch, Roberto Di Dato, Valeria di Gennaro, Alessandra de Cristofaro, Tiziana Abbondante, Serena De Felice, Mario Zannini, Mariastella Di Lauro, Roberto BMC Genomics Research Article BACKGROUND: The molecular mechanisms leading to a fully differentiated thyrocite are still object of intense study even if it is well known that thyroglobulin, thyroperoxidase, NIS and TSHr are the marker genes of thyroid differentiation. It is also well known that Pax8, TTF-1, Foxe1 and Hhex are the thyroid-enriched transcription factors responsible for the expression of the above genes, thus are responsible for the differentiated thyroid phenotype. In particular, the role of Pax8 in the fully developed thyroid gland was studied in depth and it was established that it plays a key role in thyroid development and differentiation. However, to date the bases for the thyroid-enriched expression of this transcription factor have not been unraveled yet. Here, we report the identification and characterization of a functional thyroid-specific enhancer element located far upstream of the Pax8 gene. RESULTS: We hypothesized that regulatory cis-acting elements are conserved among mammalian genes. Comparison of a genomic region extending for about 100 kb at the 5'-flanking region of the mouse and human Pax8 gene revealed several conserved regions that were tested for enhancer activity in thyroid and non-thyroid cells. Using this approach we identified one putative thyroid-specific regulatory element located 84.6 kb upstream of the Pax8 transcription start site. The in silico data were verified by promoter-reporter assays in thyroid and non-thyroid cells. Interestingly, the identified far upstream element manifested a very high transcriptional activity in the thyroid cell line PC Cl3, but showed no activity in HeLa cells. In addition, the data here reported indicate that the thyroid-enriched transcription factor TTF-1 is able to bind in vitro and in vivo the Pax8 far upstream element, and is capable to activate transcription from it. CONCLUSIONS: Results of this study reveal the presence of a thyroid-specific regulatory element in the 5' upstream region of the Pax8 gene. The identification of this regulatory element represents the first step in the investigation of upstream regulatory mechanisms that control Pax8 transcription during thyroid differentiation and are relevant to further studies on Pax8 as a candidate gene for thyroid dysgenesis. BioMed Central 2010-05-14 /pmc/articles/PMC2996967/ /pubmed/20470391 http://dx.doi.org/10.1186/1471-2164-11-306 Text en Copyright ©2010 Nitsch et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Nitsch, Roberto
Di Dato, Valeria
di Gennaro, Alessandra
de Cristofaro, Tiziana
Abbondante, Serena
De Felice, Mario
Zannini, Mariastella
Di Lauro, Roberto
Comparative genomics reveals a functional thyroid-specific element in the far upstream region of the PAX8 gene
title Comparative genomics reveals a functional thyroid-specific element in the far upstream region of the PAX8 gene
title_full Comparative genomics reveals a functional thyroid-specific element in the far upstream region of the PAX8 gene
title_fullStr Comparative genomics reveals a functional thyroid-specific element in the far upstream region of the PAX8 gene
title_full_unstemmed Comparative genomics reveals a functional thyroid-specific element in the far upstream region of the PAX8 gene
title_short Comparative genomics reveals a functional thyroid-specific element in the far upstream region of the PAX8 gene
title_sort comparative genomics reveals a functional thyroid-specific element in the far upstream region of the pax8 gene
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2996967/
https://www.ncbi.nlm.nih.gov/pubmed/20470391
http://dx.doi.org/10.1186/1471-2164-11-306
work_keys_str_mv AT nitschroberto comparativegenomicsrevealsafunctionalthyroidspecificelementinthefarupstreamregionofthepax8gene
AT didatovaleria comparativegenomicsrevealsafunctionalthyroidspecificelementinthefarupstreamregionofthepax8gene
AT digennaroalessandra comparativegenomicsrevealsafunctionalthyroidspecificelementinthefarupstreamregionofthepax8gene
AT decristofarotiziana comparativegenomicsrevealsafunctionalthyroidspecificelementinthefarupstreamregionofthepax8gene
AT abbondanteserena comparativegenomicsrevealsafunctionalthyroidspecificelementinthefarupstreamregionofthepax8gene
AT defelicemario comparativegenomicsrevealsafunctionalthyroidspecificelementinthefarupstreamregionofthepax8gene
AT zanninimariastella comparativegenomicsrevealsafunctionalthyroidspecificelementinthefarupstreamregionofthepax8gene
AT dilauroroberto comparativegenomicsrevealsafunctionalthyroidspecificelementinthefarupstreamregionofthepax8gene