Cargando…
Modeling Population Spike Trains with Specified Time-Varying Spike Rates, Trial-to-Trial Variability, and Pairwise Signal and Noise Correlations
As multi-electrode and imaging technology begin to provide us with simultaneous recordings of large neuronal populations, new methods for modeling such data must also be developed. Here, we present a model for the type of data commonly recorded in early sensory pathways: responses to repeated trials...
Autores principales: | Lyamzin, Dmitry R., Macke, Jakob H., Lesica, Nicholas A. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Frontiers Research Foundation
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2998046/ https://www.ncbi.nlm.nih.gov/pubmed/21152346 http://dx.doi.org/10.3389/fncom.2010.00144 |
Ejemplares similares
-
Spike-frequency adaptation inhibits the pairwise spike correlation
por: Wang, Jixuan, et al.
Publicado: (2023) -
Bayesian Population Decoding of Spiking Neurons
por: Gerwinn, Sebastian, et al.
Publicado: (2009) -
Temporal pairwise spike correlations fully capture single-neuron information
por: Dettner, Amadeus, et al.
Publicado: (2016) -
State-Space Analysis of Time-Varying Higher-Order Spike Correlation for Multiple Neural Spike Train Data
por: Shimazaki, Hideaki, et al.
Publicado: (2012) -
A dynamic spike threshold with correlated noise predicts observed patterns of negative interval correlations in neuronal spike trains
por: Sidhu, Robin S., et al.
Publicado: (2022)