Cargando…

Closed-Form Treatment of the Interactions between Neuronal Activity and Timing-Dependent Plasticity in Networks of Linear Neurons

Network activity and network connectivity mutually influence each other. Especially for fast processes, like spike-timing-dependent plasticity (STDP), which depends on the interaction of few (two) signals, the question arises how these interactions are continuously altering the behavior and structur...

Descripción completa

Detalles Bibliográficos
Autores principales: Kolodziejski, Christoph, Tetzlaff, Christian, Wörgötter, Florentin
Formato: Texto
Lenguaje:English
Publicado: Frontiers Research Foundation 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2998049/
https://www.ncbi.nlm.nih.gov/pubmed/21152348
http://dx.doi.org/10.3389/fncom.2010.00134
Descripción
Sumario:Network activity and network connectivity mutually influence each other. Especially for fast processes, like spike-timing-dependent plasticity (STDP), which depends on the interaction of few (two) signals, the question arises how these interactions are continuously altering the behavior and structure of the network. To address this question a time-continuous treatment of plasticity is required. However, this is - even in simple recurrent network structures - currently not possible. Thus, here we develop for a linear differential Hebbian learning system a method by which we can analytically investigate the dynamics and stability of the connections in recurrent networks. We use noisy periodic external input signals, which through the recurrent connections lead to complex actual ongoing inputs and observe that large stable ranges emerge in these networks without boundaries or weight-normalization. Somewhat counter-intuitively, we find that about 40% of these cases are obtained with a long-term potentiation-dominated STDP curve. Noise can reduce stability in some cases, but generally this does not occur. Instead stable domains are often enlarged. This study is a first step toward a better understanding of the ongoing interactions between activity and plasticity in recurrent networks using STDP. The results suggest that stability of (sub-)networks should generically be present also in larger structures.