Cargando…

Protein complex forming ability is favored over the features of interacting partners in determining the evolutionary rates of proteins in the yeast protein-protein interaction networks

BACKGROUND: Evolutionary rates of proteins in a protein-protein interaction network are primarily governed by the protein connectivity and/or expression level. A recent study revealed the importance of the features of the interacting protein partners, viz., the coefficient of functionality and clust...

Descripción completa

Detalles Bibliográficos
Autores principales: Chakraborty, Sandip, Kahali, Bratati, Ghosh, Tapash C
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2998497/
https://www.ncbi.nlm.nih.gov/pubmed/21073713
http://dx.doi.org/10.1186/1752-0509-4-155
_version_ 1782193371896348672
author Chakraborty, Sandip
Kahali, Bratati
Ghosh, Tapash C
author_facet Chakraborty, Sandip
Kahali, Bratati
Ghosh, Tapash C
author_sort Chakraborty, Sandip
collection PubMed
description BACKGROUND: Evolutionary rates of proteins in a protein-protein interaction network are primarily governed by the protein connectivity and/or expression level. A recent study revealed the importance of the features of the interacting protein partners, viz., the coefficient of functionality and clustering coefficient in controlling the protein evolutionary rates in a protein-protein interaction (PPI) network. RESULTS: By multivariate regression analysis we found that the three parameters: probability of complex formation, expression level and degree of a protein independently guide the evolutionary rates of proteins in the PPI network. The contribution of the complex forming property of a protein and its expression level led to nearly 43% of the total variation as observed from the first principal component. We also found that for complex forming proteins in the network, those which have partners sharing the same functional class evolve faster than those having partners belonging to different functional classes. The proteins in the dense parts of the network evolve faster than their counterparts which are present in the sparse regions of the network. Taking into account the complex forming ability, we found that all the complex forming proteins considered in this study evolve slower than the non-complex forming proteins irrespective of their localization in the network or the affiliation of their partners to same/different functional classes. CONCLUSIONS: We have shown here that the functionality and clustering coefficient correlated with the degree of the protein in the protein-protein interaction network. We have identified the significant relationship of the complex-forming property of proteins and their evolutionary rates even when they are classified according to the features of their interacting partners. Our study implies that the evolutionarily constrained proteins are actually members of a larger number of protein complexes and this justifies why they have enhanced expression levels.
format Text
id pubmed-2998497
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-29984972010-12-08 Protein complex forming ability is favored over the features of interacting partners in determining the evolutionary rates of proteins in the yeast protein-protein interaction networks Chakraborty, Sandip Kahali, Bratati Ghosh, Tapash C BMC Syst Biol Research Article BACKGROUND: Evolutionary rates of proteins in a protein-protein interaction network are primarily governed by the protein connectivity and/or expression level. A recent study revealed the importance of the features of the interacting protein partners, viz., the coefficient of functionality and clustering coefficient in controlling the protein evolutionary rates in a protein-protein interaction (PPI) network. RESULTS: By multivariate regression analysis we found that the three parameters: probability of complex formation, expression level and degree of a protein independently guide the evolutionary rates of proteins in the PPI network. The contribution of the complex forming property of a protein and its expression level led to nearly 43% of the total variation as observed from the first principal component. We also found that for complex forming proteins in the network, those which have partners sharing the same functional class evolve faster than those having partners belonging to different functional classes. The proteins in the dense parts of the network evolve faster than their counterparts which are present in the sparse regions of the network. Taking into account the complex forming ability, we found that all the complex forming proteins considered in this study evolve slower than the non-complex forming proteins irrespective of their localization in the network or the affiliation of their partners to same/different functional classes. CONCLUSIONS: We have shown here that the functionality and clustering coefficient correlated with the degree of the protein in the protein-protein interaction network. We have identified the significant relationship of the complex-forming property of proteins and their evolutionary rates even when they are classified according to the features of their interacting partners. Our study implies that the evolutionarily constrained proteins are actually members of a larger number of protein complexes and this justifies why they have enhanced expression levels. BioMed Central 2010-11-12 /pmc/articles/PMC2998497/ /pubmed/21073713 http://dx.doi.org/10.1186/1752-0509-4-155 Text en Copyright ©2010 Chakraborty et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Chakraborty, Sandip
Kahali, Bratati
Ghosh, Tapash C
Protein complex forming ability is favored over the features of interacting partners in determining the evolutionary rates of proteins in the yeast protein-protein interaction networks
title Protein complex forming ability is favored over the features of interacting partners in determining the evolutionary rates of proteins in the yeast protein-protein interaction networks
title_full Protein complex forming ability is favored over the features of interacting partners in determining the evolutionary rates of proteins in the yeast protein-protein interaction networks
title_fullStr Protein complex forming ability is favored over the features of interacting partners in determining the evolutionary rates of proteins in the yeast protein-protein interaction networks
title_full_unstemmed Protein complex forming ability is favored over the features of interacting partners in determining the evolutionary rates of proteins in the yeast protein-protein interaction networks
title_short Protein complex forming ability is favored over the features of interacting partners in determining the evolutionary rates of proteins in the yeast protein-protein interaction networks
title_sort protein complex forming ability is favored over the features of interacting partners in determining the evolutionary rates of proteins in the yeast protein-protein interaction networks
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2998497/
https://www.ncbi.nlm.nih.gov/pubmed/21073713
http://dx.doi.org/10.1186/1752-0509-4-155
work_keys_str_mv AT chakrabortysandip proteincomplexformingabilityisfavoredoverthefeaturesofinteractingpartnersindeterminingtheevolutionaryratesofproteinsintheyeastproteinproteininteractionnetworks
AT kahalibratati proteincomplexformingabilityisfavoredoverthefeaturesofinteractingpartnersindeterminingtheevolutionaryratesofproteinsintheyeastproteinproteininteractionnetworks
AT ghoshtapashc proteincomplexformingabilityisfavoredoverthefeaturesofinteractingpartnersindeterminingtheevolutionaryratesofproteinsintheyeastproteinproteininteractionnetworks