Cargando…
Comparative study of unsupervised dimension reduction techniques for the visualization of microarray gene expression data
BACKGROUND: Visualization of DNA microarray data in two or three dimensional spaces is an important exploratory analysis step in order to detect quality issues or to generate new hypotheses. Principal Component Analysis (PCA) is a widely used linear method to define the mapping between the high-dime...
Autores principales: | Bartenhagen, Christoph, Klein, Hans-Ulrich, Ruckert, Christian, Jiang, Xiaoyi, Dugas, Martin |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2998530/ https://www.ncbi.nlm.nih.gov/pubmed/21087509 http://dx.doi.org/10.1186/1471-2105-11-567 |
Ejemplares similares
-
Quantitative comparison of microarray experiments with published leukemia related gene expression signatures
por: Klein, Hans-Ulrich, et al.
Publicado: (2009) -
Importance of data structure in comparing two dimension reduction methods for classification of microarray gene expression data
por: Truntzer, Caroline, et al.
Publicado: (2007) -
Accurate wisdom of the crowd from unsupervised dimension reduction
por: Wang, Lingfei, et al.
Publicado: (2019) -
Principal Manifolds for Data Visualization and Dimension Reduction
por: Gorban, A N, et al.
Publicado: (2007) -
Alignment-free Visualization of Metagenomic Data by Nonlinear Dimension Reduction
por: Laczny, Cedric C., et al.
Publicado: (2014)