Cargando…
Imputing missing covariate values for the Cox model
Multiple imputation is commonly used to impute missing data, and is typically more efficient than complete cases analysis in regression analysis when covariates have missing values. Imputation may be performed using a regression model for the incomplete covariates on other covariates and, importantl...
Autores principales: | White, Ian R, Royston, Patrick |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Ltd.
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2998703/ https://www.ncbi.nlm.nih.gov/pubmed/19452569 http://dx.doi.org/10.1002/sim.3618 |
Ejemplares similares
-
Multiple imputation for an incomplete covariate that is a ratio
por: Morris, Tim P, et al.
Publicado: (2014) -
Multiple imputation of missing covariates with non-linear effects and interactions: an evaluation of statistical methods
por: Seaman, Shaun R, et al.
Publicado: (2012) -
Imputation of missing covariate values in epigenome-wide analysis of DNA methylation data
por: Wu, Chong, et al.
Publicado: (2016) -
Multiple imputation in Cox regression when there are time‐varying effects of covariates
por: Keogh, Ruth H., et al.
Publicado: (2018) -
Comparison of imputation methods for handling missing covariate data when fitting a Cox proportional hazards model: a resampling study
por: Marshall, Andrea, et al.
Publicado: (2010)