Cargando…
Improving CT prediction of treatment response in patients with metastatic colorectal carcinoma using statistical learning theory
BACKGROUND: Significant interest exists in establishing radiologic imaging as a valid biomarker for assessing the response of cancer to a variety of treatments. To address this problem, we have chosen to study patients with metastatic colorectal carcinoma to learn whether statistical learning theory...
Autores principales: | Land, Walker H, Margolis, Dan, Gottlieb, Ronald, Krupinski, Elizabeth A, Yang, Jack Y |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2999345/ https://www.ncbi.nlm.nih.gov/pubmed/21143782 http://dx.doi.org/10.1186/1471-2164-11-S3-S15 |
Ejemplares similares
-
Statistical Modeling of Relations Between PET/CT Parameters and CEA in Recurrent and Metastatic Colorectal Cancer
por: Milardovic, Renata, et al.
Publicado: (2023) -
Statistical learning theory /
por: Vapnik, Vladimir Naumovich
Publicado: (1998) -
The nature of statistical learning theory
por: Vapnik, Vladimir N
Publicado: (1995) -
The nature of statistical learning theory
por: Vapnik, Vladimir Naumovich
Publicado: (2000) -
Statistical learning techniques applied to epidemiology: a simulated case-control comparison study with logistic regression
por: Heine, John J, et al.
Publicado: (2011)