Cargando…
The mechanism of retroviral integration through X-ray structures of its key intermediates
To establish successful infection, a retrovirus must insert a DNA replica of its genome into host cell chromosomal DNA1,2. This process is carried out by the intasome, a nucleoprotein complex comprised of a tetramer of integrase (IN) assembled on the viral DNA ends3,4. The intasome engages chromosom...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2999894/ https://www.ncbi.nlm.nih.gov/pubmed/21068843 http://dx.doi.org/10.1038/nature09517 |
Sumario: | To establish successful infection, a retrovirus must insert a DNA replica of its genome into host cell chromosomal DNA1,2. This process is carried out by the intasome, a nucleoprotein complex comprised of a tetramer of integrase (IN) assembled on the viral DNA ends3,4. The intasome engages chromosomal DNA within a target capture complex to carry out strand transfer, irreversibly joining the viral and cellular DNA molecules. Although several intasome/transpososome structures from the DDE(D) recombinase superfamily were reported4-6, the mechanics of target DNA capture and strand transfer by these enzymes have not been established. Herein, we report crystal structures of the intasome from prototype foamy virus in complex with target DNA, elucidating the pre-integration target DNA capture and post-catalytic strand transfer intermediates of the retroviral integration process. The cleft between IN dimers within the intasome accommodates chromosomal DNA in a severely bent conformation, allowing widely spaced IN active sites to access the scissile phosphodiester bonds. Our results elucidate the structural basis for retroviral DNA integration and moreover provide a framework for the design of INs with altered target sequences. |
---|