Cargando…
Neuroprotective Properties of Mildronate, a Small Molecule, in a Rat Model of Parkinson’s Disease
Previously, we have found that mildronate [3-(2,2,2-trimethylhydrazinium) propionate dihydrate], a small molecule with charged nitrogen and oxygen atoms, protects mitochondrial metabolism that is altered by inhibitors of complex I and has neuroprotective effects in an azidothymidine-neurotoxicity mo...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3000094/ https://www.ncbi.nlm.nih.gov/pubmed/21151450 http://dx.doi.org/10.3390/ijms11114465 |
_version_ | 1782193502739759104 |
---|---|
author | Klusa, Vija Z. Isajevs, Sergejs Svirina, Darja Pupure, Jolanta Beitnere, Ulrika Rumaks, Juris Svirskis, Simons Jansone, Baiba Dzirkale, Zane Muceniece, Ruta Kalvinsh, Ivars Vinters, Harry V. |
author_facet | Klusa, Vija Z. Isajevs, Sergejs Svirina, Darja Pupure, Jolanta Beitnere, Ulrika Rumaks, Juris Svirskis, Simons Jansone, Baiba Dzirkale, Zane Muceniece, Ruta Kalvinsh, Ivars Vinters, Harry V. |
author_sort | Klusa, Vija Z. |
collection | PubMed |
description | Previously, we have found that mildronate [3-(2,2,2-trimethylhydrazinium) propionate dihydrate], a small molecule with charged nitrogen and oxygen atoms, protects mitochondrial metabolism that is altered by inhibitors of complex I and has neuroprotective effects in an azidothymidine-neurotoxicity mouse model. In the present study, we investigated the effects of mildronate in a rat model of Parkinson’s disease (PD) that was generated via a unilateral intrastriatal injection of the neurotoxin 6-hydroxydopamine (6-OHDA). We assessed the expression of cell biomarkers that are involved in signaling cascades and provide neural and glial integration: the neuronal marker TH (tyrosine hydroxylase); ubiquitin (a regulatory peptide involved in the ubiquitin-proteasome degradation system); Notch-3 (a marker of progenitor cells); IBA-1 (a marker of microglial cells); glial fibrillary acidic protein, GFAP (a marker of astrocytes); and inducible nitric oxide synthase, iNOS (a marker of inflammation). The data show that in the 6-OHDA-lesioned striatum, mildronate completely prevented the loss of TH, stimulated Notch-3 expression and decreased the expression of ubiquitin, GFAP and iNOS. These results provide evidence for the ability of mildronate to control the expression of an array of cellular proteins and, thus, impart multi-faceted homeostatic mechanisms in neurons and glial cells in a rat model of PD. We suggest that the use of mildronate provides a protective effect during the early stages of PD that can delay or halt the progression of this neurodegenerative disease. |
format | Text |
id | pubmed-3000094 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Molecular Diversity Preservation International (MDPI) |
record_format | MEDLINE/PubMed |
spelling | pubmed-30000942010-12-10 Neuroprotective Properties of Mildronate, a Small Molecule, in a Rat Model of Parkinson’s Disease Klusa, Vija Z. Isajevs, Sergejs Svirina, Darja Pupure, Jolanta Beitnere, Ulrika Rumaks, Juris Svirskis, Simons Jansone, Baiba Dzirkale, Zane Muceniece, Ruta Kalvinsh, Ivars Vinters, Harry V. Int J Mol Sci Article Previously, we have found that mildronate [3-(2,2,2-trimethylhydrazinium) propionate dihydrate], a small molecule with charged nitrogen and oxygen atoms, protects mitochondrial metabolism that is altered by inhibitors of complex I and has neuroprotective effects in an azidothymidine-neurotoxicity mouse model. In the present study, we investigated the effects of mildronate in a rat model of Parkinson’s disease (PD) that was generated via a unilateral intrastriatal injection of the neurotoxin 6-hydroxydopamine (6-OHDA). We assessed the expression of cell biomarkers that are involved in signaling cascades and provide neural and glial integration: the neuronal marker TH (tyrosine hydroxylase); ubiquitin (a regulatory peptide involved in the ubiquitin-proteasome degradation system); Notch-3 (a marker of progenitor cells); IBA-1 (a marker of microglial cells); glial fibrillary acidic protein, GFAP (a marker of astrocytes); and inducible nitric oxide synthase, iNOS (a marker of inflammation). The data show that in the 6-OHDA-lesioned striatum, mildronate completely prevented the loss of TH, stimulated Notch-3 expression and decreased the expression of ubiquitin, GFAP and iNOS. These results provide evidence for the ability of mildronate to control the expression of an array of cellular proteins and, thus, impart multi-faceted homeostatic mechanisms in neurons and glial cells in a rat model of PD. We suggest that the use of mildronate provides a protective effect during the early stages of PD that can delay or halt the progression of this neurodegenerative disease. Molecular Diversity Preservation International (MDPI) 2010-11-09 /pmc/articles/PMC3000094/ /pubmed/21151450 http://dx.doi.org/10.3390/ijms11114465 Text en © 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. http://creativecommons.org/licenses/by/3.0 This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Article Klusa, Vija Z. Isajevs, Sergejs Svirina, Darja Pupure, Jolanta Beitnere, Ulrika Rumaks, Juris Svirskis, Simons Jansone, Baiba Dzirkale, Zane Muceniece, Ruta Kalvinsh, Ivars Vinters, Harry V. Neuroprotective Properties of Mildronate, a Small Molecule, in a Rat Model of Parkinson’s Disease |
title | Neuroprotective Properties of Mildronate, a Small Molecule, in a Rat Model of Parkinson’s Disease |
title_full | Neuroprotective Properties of Mildronate, a Small Molecule, in a Rat Model of Parkinson’s Disease |
title_fullStr | Neuroprotective Properties of Mildronate, a Small Molecule, in a Rat Model of Parkinson’s Disease |
title_full_unstemmed | Neuroprotective Properties of Mildronate, a Small Molecule, in a Rat Model of Parkinson’s Disease |
title_short | Neuroprotective Properties of Mildronate, a Small Molecule, in a Rat Model of Parkinson’s Disease |
title_sort | neuroprotective properties of mildronate, a small molecule, in a rat model of parkinson’s disease |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3000094/ https://www.ncbi.nlm.nih.gov/pubmed/21151450 http://dx.doi.org/10.3390/ijms11114465 |
work_keys_str_mv | AT klusavijaz neuroprotectivepropertiesofmildronateasmallmoleculeinaratmodelofparkinsonsdisease AT isajevssergejs neuroprotectivepropertiesofmildronateasmallmoleculeinaratmodelofparkinsonsdisease AT svirinadarja neuroprotectivepropertiesofmildronateasmallmoleculeinaratmodelofparkinsonsdisease AT pupurejolanta neuroprotectivepropertiesofmildronateasmallmoleculeinaratmodelofparkinsonsdisease AT beitnereulrika neuroprotectivepropertiesofmildronateasmallmoleculeinaratmodelofparkinsonsdisease AT rumaksjuris neuroprotectivepropertiesofmildronateasmallmoleculeinaratmodelofparkinsonsdisease AT svirskissimons neuroprotectivepropertiesofmildronateasmallmoleculeinaratmodelofparkinsonsdisease AT jansonebaiba neuroprotectivepropertiesofmildronateasmallmoleculeinaratmodelofparkinsonsdisease AT dzirkalezane neuroprotectivepropertiesofmildronateasmallmoleculeinaratmodelofparkinsonsdisease AT mucenieceruta neuroprotectivepropertiesofmildronateasmallmoleculeinaratmodelofparkinsonsdisease AT kalvinshivars neuroprotectivepropertiesofmildronateasmallmoleculeinaratmodelofparkinsonsdisease AT vintersharryv neuroprotectivepropertiesofmildronateasmallmoleculeinaratmodelofparkinsonsdisease |