Cargando…

Molecular Subtyping to Detect Human Listeriosis Clusters

We analyzed the diversity (Simpson’s Index, D) and distribution of Listeria monocytogenes in human listeriosis cases in New York State (excluding New York City) from November 1996 to June 2000 by using automated ribotyping and pulsed-field gel electrophoresis (PFGE). We applied a scan statistic (p&l...

Descripción completa

Detalles Bibliográficos
Autores principales: Sauders, Brian D., Fortes, Esther D., Morse, Dale L., Dumas, Nellie, Kiehlbauch, Julia A., Schukken, Ynte, Hibbs, Jonathan R., Wiedmann, Martin
Formato: Texto
Lenguaje:English
Publicado: Centers for Disease Control and Prevention 2003
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3000145/
https://www.ncbi.nlm.nih.gov/pubmed/12781006
http://dx.doi.org/10.3201/eid0906.020702
Descripción
Sumario:We analyzed the diversity (Simpson’s Index, D) and distribution of Listeria monocytogenes in human listeriosis cases in New York State (excluding New York City) from November 1996 to June 2000 by using automated ribotyping and pulsed-field gel electrophoresis (PFGE). We applied a scan statistic (p<0.05) to detect listeriosis clusters caused by a specific Listeria monocytogenes subtype. Of 131 human isolates, 34 (D=0.923) ribotypes and 74 (D=0.975) PFGE types were found. Nine (31% of cases) clusters were identified by ribotype or PFGE; five (18% of cases) clusters were identified by using both methods. Two of the nine clusters (13% of cases) identified corresponded with investigated multistate listeriosis outbreaks. While most human listeriosis cases are considered sporadic, highly discriminatory molecular subtyping approaches thus indicated that 13% to 31% of cases reported in New York State may represent single-source clusters. Listeriosis control and reduction efforts should include broad-based subtyping of human isolates and consider that a large number of cases may represent outbreaks.