Cargando…

Evaluation of partial volume effect correction methods for brain positron emission tomography: Quantification and reproducibility

Quantitative accuracy of positron emission tomography (PET) is decreased by the partial volume effect (PVE). The PVE correction (PVC) methods proposed by Alfano et al., Rousset et al., Müller-Gärtner et al. and Meltzer et al. were evaluated in the present study to obtain guidelines for selecting amo...

Descripción completa

Detalles Bibliográficos
Autores principales: Harri, Merisaari, Mika, Teras, Jussi, Hirvonen, Nevalainen, Olli S., Jarmo, Hietala
Formato: Texto
Lenguaje:English
Publicado: Medknow Publications 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3000501/
https://www.ncbi.nlm.nih.gov/pubmed/21157530
http://dx.doi.org/10.4103/0971-6203.35723
Descripción
Sumario:Quantitative accuracy of positron emission tomography (PET) is decreased by the partial volume effect (PVE). The PVE correction (PVC) methods proposed by Alfano et al., Rousset et al., Müller-Gärtner et al. and Meltzer et al. were evaluated in the present study to obtain guidelines for selecting among them. For accuracy evaluation, the Hoffman brain phantom was scanned with three PETs of differing spatial resolution in order to measure the effect of PVC on radioactivity distribution. Test-retest data consisting of duplicate dynamic emission recordings of the dopamine D2-receptor ligand [(11)C] raclopride obtained in eight healthy control subjects were used to test the correction effect in different regions of interest. The PVC method proposed by Alfano et al. gave the best quantification accuracy in the brain gray matter region. When the effect of PVC on reliability was tested with human data, the method of Meltzer et al. proved to be the most reliable. The method by Alfano et al. may be better for group comparison studies and the method by Meltzer et al. for intra-subject drug-effect studies.