Cargando…

Raman Spectroscopy and Related Techniques in Biomedicine

In this review we describe label-free optical spectroscopy techniques which are able to non-invasively measure the (bio)chemistry in biological systems. Raman spectroscopy uses visible or near-infrared light to measure a spectrum of vibrational bonds in seconds. Coherent anti-Stokes Raman (CARS) mic...

Descripción completa

Detalles Bibliográficos
Autores principales: Downes, Andrew, Elfick, Alistair
Formato: Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3000600/
https://www.ncbi.nlm.nih.gov/pubmed/21151763
http://dx.doi.org/10.3390/s100301871
Descripción
Sumario:In this review we describe label-free optical spectroscopy techniques which are able to non-invasively measure the (bio)chemistry in biological systems. Raman spectroscopy uses visible or near-infrared light to measure a spectrum of vibrational bonds in seconds. Coherent anti-Stokes Raman (CARS) microscopy and stimulated Raman loss (SRL) microscopy are orders of magnitude more efficient than Raman spectroscopy, and are able to acquire high quality chemically-specific images in seconds. We discuss the benefits and limitations of all techniques, with particular emphasis on applications in biomedicine—both in vivo (using fiber endoscopes) and in vitro (in optical microscopes).