Cargando…
Stimulation of ribosomal frameshifting by antisense LNA
Programmed ribosomal frameshifting is a translational recoding mechanism commonly used by RNA viruses to express two or more proteins from a single mRNA at a fixed ratio. An essential element in this process is the presence of an RNA secondary structure, such as a pseudoknot or a hairpin, located do...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3001050/ https://www.ncbi.nlm.nih.gov/pubmed/20693527 http://dx.doi.org/10.1093/nar/gkq650 |
_version_ | 1782193586397249536 |
---|---|
author | Yu, Chien-Hung Noteborn, Mathieu H. M. Olsthoorn, René C. L. |
author_facet | Yu, Chien-Hung Noteborn, Mathieu H. M. Olsthoorn, René C. L. |
author_sort | Yu, Chien-Hung |
collection | PubMed |
description | Programmed ribosomal frameshifting is a translational recoding mechanism commonly used by RNA viruses to express two or more proteins from a single mRNA at a fixed ratio. An essential element in this process is the presence of an RNA secondary structure, such as a pseudoknot or a hairpin, located downstream of the slippery sequence. Here, we have tested the efficiency of RNA oligonucleotides annealing downstream of the slippery sequence to induce frameshifting in vitro. Maximal frameshifting was observed with oligonucleotides of 12–18 nt. Antisense oligonucleotides bearing locked nucleid acid (LNA) modifications also proved to be efficient frameshift-stimulators in contrast to DNA oligonucleotides. The number, sequence and location of LNA bases in an otherwise DNA oligonucleotide have to be carefully manipulated to obtain optimal levels of frameshifting. Our data favor a model in which RNA stability at the entrance of the ribosomal tunnel is the major determinant of stimulating slippage rather than a specific three-dimensional structure of the stimulating RNA element. |
format | Text |
id | pubmed-3001050 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-30010502010-12-13 Stimulation of ribosomal frameshifting by antisense LNA Yu, Chien-Hung Noteborn, Mathieu H. M. Olsthoorn, René C. L. Nucleic Acids Res RNA Programmed ribosomal frameshifting is a translational recoding mechanism commonly used by RNA viruses to express two or more proteins from a single mRNA at a fixed ratio. An essential element in this process is the presence of an RNA secondary structure, such as a pseudoknot or a hairpin, located downstream of the slippery sequence. Here, we have tested the efficiency of RNA oligonucleotides annealing downstream of the slippery sequence to induce frameshifting in vitro. Maximal frameshifting was observed with oligonucleotides of 12–18 nt. Antisense oligonucleotides bearing locked nucleid acid (LNA) modifications also proved to be efficient frameshift-stimulators in contrast to DNA oligonucleotides. The number, sequence and location of LNA bases in an otherwise DNA oligonucleotide have to be carefully manipulated to obtain optimal levels of frameshifting. Our data favor a model in which RNA stability at the entrance of the ribosomal tunnel is the major determinant of stimulating slippage rather than a specific three-dimensional structure of the stimulating RNA element. Oxford University Press 2010-12 2010-08-06 /pmc/articles/PMC3001050/ /pubmed/20693527 http://dx.doi.org/10.1093/nar/gkq650 Text en © The Author(s) 2010. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/2.5 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | RNA Yu, Chien-Hung Noteborn, Mathieu H. M. Olsthoorn, René C. L. Stimulation of ribosomal frameshifting by antisense LNA |
title | Stimulation of ribosomal frameshifting by antisense LNA |
title_full | Stimulation of ribosomal frameshifting by antisense LNA |
title_fullStr | Stimulation of ribosomal frameshifting by antisense LNA |
title_full_unstemmed | Stimulation of ribosomal frameshifting by antisense LNA |
title_short | Stimulation of ribosomal frameshifting by antisense LNA |
title_sort | stimulation of ribosomal frameshifting by antisense lna |
topic | RNA |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3001050/ https://www.ncbi.nlm.nih.gov/pubmed/20693527 http://dx.doi.org/10.1093/nar/gkq650 |
work_keys_str_mv | AT yuchienhung stimulationofribosomalframeshiftingbyantisenselna AT notebornmathieuhm stimulationofribosomalframeshiftingbyantisenselna AT olsthoornrenecl stimulationofribosomalframeshiftingbyantisenselna |