Cargando…
Building promoter aware transcriptional regulatory networks using siRNA perturbation and deepCAGE
Perturbation and time-course data sets, in combination with computational approaches, can be used to infer transcriptional regulatory networks which ultimately govern the developmental pathways and responses of cells. Here, we individually knocked down the four transcription factors PU.1, IRF8, MYB...
Autores principales: | Vitezic, Morana, Lassmann, Timo, Forrest, Alistair R. R., Suzuki, Masanori, Tomaru, Yasuhiro, Kawai, Jun, Carninci, Piero, Suzuki, Harukazu, Hayashizaki, Yoshihide, Daub, Carsten O. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3001087/ https://www.ncbi.nlm.nih.gov/pubmed/20724440 http://dx.doi.org/10.1093/nar/gkq729 |
Ejemplares similares
-
Redefining the transcriptional regulatory dynamics of classically and alternatively activated macrophages by deepCAGE transcriptomics
por: Roy, Sugata, et al.
Publicado: (2015) -
Methods for analyzing deep sequencing expression data: constructing the human and mouse promoterome with deepCAGE data
por: Balwierz, Piotr J, et al.
Publicado: (2009) -
RECLU: a pipeline to discover reproducible transcriptional start sites and their alternative regulation using capped analysis of gene expression (CAGE)
por: Ohmiya, Hiroko, et al.
Publicado: (2014) -
MOIRAI: a compact workflow system for CAGE analysis
por: Hasegawa, Akira, et al.
Publicado: (2014) -
Beyond the FANTOM4
por: Suzuki, Harukazu, et al.
Publicado: (2010)