Cargando…
Advanced computational algorithms for microbial community analysis using massive 16S rRNA sequence data
With the aid of next-generation sequencing technology, researchers can now obtain millions of microbial signature sequences for diverse applications ranging from human epidemiological studies to global ocean surveys. The development of advanced computational strategies to maximally extract pertinent...
Autores principales: | Sun, Yijun, Cai, Yunpeng, Mai, Volker, Farmerie, William, Yu, Fahong, Li, Jian, Goodison, Steve |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3001099/ https://www.ncbi.nlm.nih.gov/pubmed/20929878 http://dx.doi.org/10.1093/nar/gkq872 |
Ejemplares similares
-
ESPRIT: estimating species richness using large collections of 16S rRNA pyrosequences
por: Sun, Yijun, et al.
Publicado: (2009) -
ESPRIT-Tree: hierarchical clustering analysis of millions of 16S rRNA pyrosequences in quasilinear computational time
por: Cai, Yunpeng, et al.
Publicado: (2011) -
SCRAPT: an iterative algorithm for clustering large 16S rRNA gene data sets
por: Luan, Tu, et al.
Publicado: (2023) -
Immobilized stem–loop structured probes as conformational switches for enzymatic detection of microbial 16S rRNA
por: Bockisch, Benjamin, et al.
Publicado: (2005) -
High-resolution microbial community reconstruction by integrating short reads from multiple 16S rRNA regions
por: Amir, Amnon, et al.
Publicado: (2013)