Cargando…
The Neurotoxicity of DOPAL: Behavioral and Stereological Evidence for Its Role in Parkinson Disease Pathogenesis
BACKGROUND: The etiology of Parkinson disease (PD) has yet to be fully elucidated. We examined the consequences of injections of 3,4-dihydroxyphenylacetaldehyde (DOPAL), a toxic metabolite of dopamine, into the substantia nigra of rats on motor behavior and neuronal survival. METHODS/PRINCIPAL FINDI...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3001493/ https://www.ncbi.nlm.nih.gov/pubmed/21179455 http://dx.doi.org/10.1371/journal.pone.0015251 |
_version_ | 1782193640609677312 |
---|---|
author | Panneton, W. Michael Kumar, V. B. Gan, Qi Burke, William J. Galvin, James E. |
author_facet | Panneton, W. Michael Kumar, V. B. Gan, Qi Burke, William J. Galvin, James E. |
author_sort | Panneton, W. Michael |
collection | PubMed |
description | BACKGROUND: The etiology of Parkinson disease (PD) has yet to be fully elucidated. We examined the consequences of injections of 3,4-dihydroxyphenylacetaldehyde (DOPAL), a toxic metabolite of dopamine, into the substantia nigra of rats on motor behavior and neuronal survival. METHODS/PRINCIPAL FINDINGS: A total of 800 nl/rat of DOPAL (1 µg/200 nl) was injected stereotaxically into the substantia nigra over three sites while control animals received similar injections of phosphate buffered saline. Rotational behavior of these rats was analyzed, optical density of striatal tyrosine hydroxylase was calculated, and unbiased stereological counts of the substantia nigra were made. The rats showed significant rotational asymmetry ipsilateral to the lesion, supporting disruption of dopaminergic nigrostriatal projections. Such disruption was verified since the density of striatal tyrosine hydroxylase decreased significantly (p<0.001) on the side ipsilateral to the DOPAL injections when compared to the non-injected side. Stereological counts of neurons stained for Nissl in pars compacta of the substantia nigra significantly decreased (p<0.001) from control values, while counts of those in pars reticulata were unchanged after DOPAL injections. Counts of neurons immunostained for tyrosine hydroxylase also showed a significant (p = 0.032) loss of dopaminergic neurons. In spite of significant loss of dopaminergic neurons, DOPAL injections did not induce significant glial reaction in the substantia nigra. CONCLUSIONS: The present study provides the first in vivo quantification of substantia nigra pars compacta neuronal loss after injection of the endogenous toxin DOPAL. The results demonstrate that injections of DOPAL selectively kills SN DA neurons, suggests loss of striatal DA terminals, spares non-dopaminergic neurons of the pars reticulata, and triggers a behavioral phenotype (rotational asymmetry) consistent with other PD animal models. This study supports the “catecholaldehyde hypothesis” as an important link for the etiology of sporadic PD. |
format | Text |
id | pubmed-3001493 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-30014932010-12-21 The Neurotoxicity of DOPAL: Behavioral and Stereological Evidence for Its Role in Parkinson Disease Pathogenesis Panneton, W. Michael Kumar, V. B. Gan, Qi Burke, William J. Galvin, James E. PLoS One Research Article BACKGROUND: The etiology of Parkinson disease (PD) has yet to be fully elucidated. We examined the consequences of injections of 3,4-dihydroxyphenylacetaldehyde (DOPAL), a toxic metabolite of dopamine, into the substantia nigra of rats on motor behavior and neuronal survival. METHODS/PRINCIPAL FINDINGS: A total of 800 nl/rat of DOPAL (1 µg/200 nl) was injected stereotaxically into the substantia nigra over three sites while control animals received similar injections of phosphate buffered saline. Rotational behavior of these rats was analyzed, optical density of striatal tyrosine hydroxylase was calculated, and unbiased stereological counts of the substantia nigra were made. The rats showed significant rotational asymmetry ipsilateral to the lesion, supporting disruption of dopaminergic nigrostriatal projections. Such disruption was verified since the density of striatal tyrosine hydroxylase decreased significantly (p<0.001) on the side ipsilateral to the DOPAL injections when compared to the non-injected side. Stereological counts of neurons stained for Nissl in pars compacta of the substantia nigra significantly decreased (p<0.001) from control values, while counts of those in pars reticulata were unchanged after DOPAL injections. Counts of neurons immunostained for tyrosine hydroxylase also showed a significant (p = 0.032) loss of dopaminergic neurons. In spite of significant loss of dopaminergic neurons, DOPAL injections did not induce significant glial reaction in the substantia nigra. CONCLUSIONS: The present study provides the first in vivo quantification of substantia nigra pars compacta neuronal loss after injection of the endogenous toxin DOPAL. The results demonstrate that injections of DOPAL selectively kills SN DA neurons, suggests loss of striatal DA terminals, spares non-dopaminergic neurons of the pars reticulata, and triggers a behavioral phenotype (rotational asymmetry) consistent with other PD animal models. This study supports the “catecholaldehyde hypothesis” as an important link for the etiology of sporadic PD. Public Library of Science 2010-12-13 /pmc/articles/PMC3001493/ /pubmed/21179455 http://dx.doi.org/10.1371/journal.pone.0015251 Text en This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. https://creativecommons.org/publicdomain/zero/1.0/ This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. |
spellingShingle | Research Article Panneton, W. Michael Kumar, V. B. Gan, Qi Burke, William J. Galvin, James E. The Neurotoxicity of DOPAL: Behavioral and Stereological Evidence for Its Role in Parkinson Disease Pathogenesis |
title | The Neurotoxicity of DOPAL: Behavioral and Stereological Evidence for Its Role in Parkinson Disease Pathogenesis |
title_full | The Neurotoxicity of DOPAL: Behavioral and Stereological Evidence for Its Role in Parkinson Disease Pathogenesis |
title_fullStr | The Neurotoxicity of DOPAL: Behavioral and Stereological Evidence for Its Role in Parkinson Disease Pathogenesis |
title_full_unstemmed | The Neurotoxicity of DOPAL: Behavioral and Stereological Evidence for Its Role in Parkinson Disease Pathogenesis |
title_short | The Neurotoxicity of DOPAL: Behavioral and Stereological Evidence for Its Role in Parkinson Disease Pathogenesis |
title_sort | neurotoxicity of dopal: behavioral and stereological evidence for its role in parkinson disease pathogenesis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3001493/ https://www.ncbi.nlm.nih.gov/pubmed/21179455 http://dx.doi.org/10.1371/journal.pone.0015251 |
work_keys_str_mv | AT pannetonwmichael theneurotoxicityofdopalbehavioralandstereologicalevidenceforitsroleinparkinsondiseasepathogenesis AT kumarvb theneurotoxicityofdopalbehavioralandstereologicalevidenceforitsroleinparkinsondiseasepathogenesis AT ganqi theneurotoxicityofdopalbehavioralandstereologicalevidenceforitsroleinparkinsondiseasepathogenesis AT burkewilliamj theneurotoxicityofdopalbehavioralandstereologicalevidenceforitsroleinparkinsondiseasepathogenesis AT galvinjamese theneurotoxicityofdopalbehavioralandstereologicalevidenceforitsroleinparkinsondiseasepathogenesis AT pannetonwmichael neurotoxicityofdopalbehavioralandstereologicalevidenceforitsroleinparkinsondiseasepathogenesis AT kumarvb neurotoxicityofdopalbehavioralandstereologicalevidenceforitsroleinparkinsondiseasepathogenesis AT ganqi neurotoxicityofdopalbehavioralandstereologicalevidenceforitsroleinparkinsondiseasepathogenesis AT burkewilliamj neurotoxicityofdopalbehavioralandstereologicalevidenceforitsroleinparkinsondiseasepathogenesis AT galvinjamese neurotoxicityofdopalbehavioralandstereologicalevidenceforitsroleinparkinsondiseasepathogenesis |