Cargando…

Uncoupling of complex regulatory patterning during evolution of larval development in echinoderms

BACKGROUND: Conservation of orthologous regulatory gene expression domains, especially along the neuroectodermal anterior-posterior axis, in animals as disparate as flies and vertebrates suggests that common patterning mechanisms have been conserved since the base of Bilateria. The homology of axial...

Descripción completa

Detalles Bibliográficos
Autores principales: Yankura, Kristen A, Martik, Megan L, Jennings, Charlotte K, Hinman, Veronica F
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3002323/
https://www.ncbi.nlm.nih.gov/pubmed/21118544
http://dx.doi.org/10.1186/1741-7007-8-143
_version_ 1782193731124854784
author Yankura, Kristen A
Martik, Megan L
Jennings, Charlotte K
Hinman, Veronica F
author_facet Yankura, Kristen A
Martik, Megan L
Jennings, Charlotte K
Hinman, Veronica F
author_sort Yankura, Kristen A
collection PubMed
description BACKGROUND: Conservation of orthologous regulatory gene expression domains, especially along the neuroectodermal anterior-posterior axis, in animals as disparate as flies and vertebrates suggests that common patterning mechanisms have been conserved since the base of Bilateria. The homology of axial patterning is far less clear for the many marine animals that undergo a radical transformation in body plan during metamorphosis. The embryos of these animals are microscopic, feeding within the plankton until they metamorphose into their adult forms. RESULTS: We describe here the localization of 14 transcription factors within the ectoderm during early embryogenesis in Patiria miniata, a sea star with an indirectly developing planktonic bipinnaria larva. We find that the animal-vegetal axis of this very simple embryo is surprisingly well patterned. Furthermore, the patterning that we observe throughout the ectoderm generally corresponds to that of "head/anterior brain" patterning known for hemichordates and vertebrates, which share a common ancestor with the sea star. While we suggest here that aspects of head/anterior brain patterning are generally conserved, we show that another suite of genes involved in retinal determination is absent from the ectoderm of these echinoderms and instead operates within the mesoderm. CONCLUSIONS: Our findings therefore extend, for the first time, evidence of a conserved axial pattering to echinoderm embryos exhibiting maximal indirect development. The dissociation of head/anterior brain patterning from "retinal specification" in echinoderm blastulae might reflect modular changes to a developmental gene regulatory network within the ectoderm that facilitates the evolution of these microscopic larvae.
format Text
id pubmed-3002323
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-30023232010-12-16 Uncoupling of complex regulatory patterning during evolution of larval development in echinoderms Yankura, Kristen A Martik, Megan L Jennings, Charlotte K Hinman, Veronica F BMC Biol Research Article BACKGROUND: Conservation of orthologous regulatory gene expression domains, especially along the neuroectodermal anterior-posterior axis, in animals as disparate as flies and vertebrates suggests that common patterning mechanisms have been conserved since the base of Bilateria. The homology of axial patterning is far less clear for the many marine animals that undergo a radical transformation in body plan during metamorphosis. The embryos of these animals are microscopic, feeding within the plankton until they metamorphose into their adult forms. RESULTS: We describe here the localization of 14 transcription factors within the ectoderm during early embryogenesis in Patiria miniata, a sea star with an indirectly developing planktonic bipinnaria larva. We find that the animal-vegetal axis of this very simple embryo is surprisingly well patterned. Furthermore, the patterning that we observe throughout the ectoderm generally corresponds to that of "head/anterior brain" patterning known for hemichordates and vertebrates, which share a common ancestor with the sea star. While we suggest here that aspects of head/anterior brain patterning are generally conserved, we show that another suite of genes involved in retinal determination is absent from the ectoderm of these echinoderms and instead operates within the mesoderm. CONCLUSIONS: Our findings therefore extend, for the first time, evidence of a conserved axial pattering to echinoderm embryos exhibiting maximal indirect development. The dissociation of head/anterior brain patterning from "retinal specification" in echinoderm blastulae might reflect modular changes to a developmental gene regulatory network within the ectoderm that facilitates the evolution of these microscopic larvae. BioMed Central 2010-11-30 /pmc/articles/PMC3002323/ /pubmed/21118544 http://dx.doi.org/10.1186/1741-7007-8-143 Text en Copyright ©2010 Yankura et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Yankura, Kristen A
Martik, Megan L
Jennings, Charlotte K
Hinman, Veronica F
Uncoupling of complex regulatory patterning during evolution of larval development in echinoderms
title Uncoupling of complex regulatory patterning during evolution of larval development in echinoderms
title_full Uncoupling of complex regulatory patterning during evolution of larval development in echinoderms
title_fullStr Uncoupling of complex regulatory patterning during evolution of larval development in echinoderms
title_full_unstemmed Uncoupling of complex regulatory patterning during evolution of larval development in echinoderms
title_short Uncoupling of complex regulatory patterning during evolution of larval development in echinoderms
title_sort uncoupling of complex regulatory patterning during evolution of larval development in echinoderms
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3002323/
https://www.ncbi.nlm.nih.gov/pubmed/21118544
http://dx.doi.org/10.1186/1741-7007-8-143
work_keys_str_mv AT yankurakristena uncouplingofcomplexregulatorypatterningduringevolutionoflarvaldevelopmentinechinoderms
AT martikmeganl uncouplingofcomplexregulatorypatterningduringevolutionoflarvaldevelopmentinechinoderms
AT jenningscharlottek uncouplingofcomplexregulatorypatterningduringevolutionoflarvaldevelopmentinechinoderms
AT hinmanveronicaf uncouplingofcomplexregulatorypatterningduringevolutionoflarvaldevelopmentinechinoderms