Cargando…
Merged consensus clustering to assess and improve class discovery with microarray data
BACKGROUND: One of the most commonly performed tasks when analysing high throughput gene expression data is to use clustering methods to classify the data into groups. There are a large number of methods available to perform clustering, but it is often unclear which method is best suited to the data...
Autores principales: | Simpson, T Ian, Armstrong, J Douglas, Jarman, Andrew P |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3002369/ https://www.ncbi.nlm.nih.gov/pubmed/21129181 http://dx.doi.org/10.1186/1471-2105-11-590 |
Ejemplares similares
-
virtualArray: a R/bioconductor package to merge raw data from different microarray platforms
por: Heider, Andreas, et al.
Publicado: (2013) -
Bio::Homology::InterologWalk - A Perl module to build putative protein-protein interaction networks through interolog mapping
por: Gallone, Giuseppe, et al.
Publicado: (2011) -
Unlocking the potential of publicly available microarray data using inSilicoDb and inSilicoMerging R/Bioconductor packages
por: Taminau, Jonatan, et al.
Publicado: (2012) -
Visualization-based discovery and analysis of genomic aberrations in microarray data
por: Myers, Chad L, et al.
Publicado: (2005) -
Mfuzz: A software package for soft clustering of microarray data
por: Kumar, Lokesh, et al.
Publicado: (2007)