Cargando…

Conserved charged amino acid residues in the extracellular region of sodium/iodide symporter are critical for iodide transport activity

BACKGROUND: Sodium/iodide symporter (NIS) mediates the active transport and accumulation of iodide from the blood into the thyroid gland. His-226 located in the extracellular region of NIS has been demonstrated to be critical for iodide transport in our previous study. The conserved charged amino ac...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Chia-Cheng, Ho, Tin-Yun, Kao, Chia-Hung, Wu, Shih-Lu, Liang, Ji-An, Hsiang, Chien-Yun
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3002920/
https://www.ncbi.nlm.nih.gov/pubmed/21092238
http://dx.doi.org/10.1186/1423-0127-17-89
_version_ 1782193804474843136
author Li, Chia-Cheng
Ho, Tin-Yun
Kao, Chia-Hung
Wu, Shih-Lu
Liang, Ji-An
Hsiang, Chien-Yun
author_facet Li, Chia-Cheng
Ho, Tin-Yun
Kao, Chia-Hung
Wu, Shih-Lu
Liang, Ji-An
Hsiang, Chien-Yun
author_sort Li, Chia-Cheng
collection PubMed
description BACKGROUND: Sodium/iodide symporter (NIS) mediates the active transport and accumulation of iodide from the blood into the thyroid gland. His-226 located in the extracellular region of NIS has been demonstrated to be critical for iodide transport in our previous study. The conserved charged amino acid residues in the extracellular region of NIS were therefore characterized in this study. METHODS: Fourteen charged residues (Arg-9, Glu-79, Arg-82, Lys-86, Asp-163, His-226, Arg-228, Asp-233, Asp-237, Arg-239, Arg-241, Asp-311, Asp-322, and Asp-331) were replaced by alanine. Iodide uptake abilities of mutants were evaluated by steady-state and kinetic analysis. The three-dimensional comparative protein structure of NIS was further modeled using sodium/glucose transporter as the reference protein. RESULTS: All the NIS mutants were expressed normally in the cells and targeted correctly to the plasma membrane. However, these mutants, except R9A, displayed severe defects on the iodide uptake. Further kinetic analysis revealed that mutations at conserved positively charged amino acid residues in the extracellular region of NIS led to decrease NIS-mediated iodide uptake activity by reducing the maximal rate of iodide transport, while mutations at conserved negatively charged residues led to decrease iodide transport by increasing dissociation between NIS mutants and iodide. CONCLUSIONS: This is the first report characterizing thoroughly the functional significance of conserved charged amino acid residues in the extracellular region of NIS. Our data suggested that conserved charged amino acid residues, except Arg-9, in the extracellular region of NIS were critical for iodide transport.
format Text
id pubmed-3002920
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-30029202010-12-17 Conserved charged amino acid residues in the extracellular region of sodium/iodide symporter are critical for iodide transport activity Li, Chia-Cheng Ho, Tin-Yun Kao, Chia-Hung Wu, Shih-Lu Liang, Ji-An Hsiang, Chien-Yun J Biomed Sci Research BACKGROUND: Sodium/iodide symporter (NIS) mediates the active transport and accumulation of iodide from the blood into the thyroid gland. His-226 located in the extracellular region of NIS has been demonstrated to be critical for iodide transport in our previous study. The conserved charged amino acid residues in the extracellular region of NIS were therefore characterized in this study. METHODS: Fourteen charged residues (Arg-9, Glu-79, Arg-82, Lys-86, Asp-163, His-226, Arg-228, Asp-233, Asp-237, Arg-239, Arg-241, Asp-311, Asp-322, and Asp-331) were replaced by alanine. Iodide uptake abilities of mutants were evaluated by steady-state and kinetic analysis. The three-dimensional comparative protein structure of NIS was further modeled using sodium/glucose transporter as the reference protein. RESULTS: All the NIS mutants were expressed normally in the cells and targeted correctly to the plasma membrane. However, these mutants, except R9A, displayed severe defects on the iodide uptake. Further kinetic analysis revealed that mutations at conserved positively charged amino acid residues in the extracellular region of NIS led to decrease NIS-mediated iodide uptake activity by reducing the maximal rate of iodide transport, while mutations at conserved negatively charged residues led to decrease iodide transport by increasing dissociation between NIS mutants and iodide. CONCLUSIONS: This is the first report characterizing thoroughly the functional significance of conserved charged amino acid residues in the extracellular region of NIS. Our data suggested that conserved charged amino acid residues, except Arg-9, in the extracellular region of NIS were critical for iodide transport. BioMed Central 2010-11-23 /pmc/articles/PMC3002920/ /pubmed/21092238 http://dx.doi.org/10.1186/1423-0127-17-89 Text en Copyright ©2010 Li et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<url>http://creativecommons.org/licenses/by/2.0</url>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Li, Chia-Cheng
Ho, Tin-Yun
Kao, Chia-Hung
Wu, Shih-Lu
Liang, Ji-An
Hsiang, Chien-Yun
Conserved charged amino acid residues in the extracellular region of sodium/iodide symporter are critical for iodide transport activity
title Conserved charged amino acid residues in the extracellular region of sodium/iodide symporter are critical for iodide transport activity
title_full Conserved charged amino acid residues in the extracellular region of sodium/iodide symporter are critical for iodide transport activity
title_fullStr Conserved charged amino acid residues in the extracellular region of sodium/iodide symporter are critical for iodide transport activity
title_full_unstemmed Conserved charged amino acid residues in the extracellular region of sodium/iodide symporter are critical for iodide transport activity
title_short Conserved charged amino acid residues in the extracellular region of sodium/iodide symporter are critical for iodide transport activity
title_sort conserved charged amino acid residues in the extracellular region of sodium/iodide symporter are critical for iodide transport activity
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3002920/
https://www.ncbi.nlm.nih.gov/pubmed/21092238
http://dx.doi.org/10.1186/1423-0127-17-89
work_keys_str_mv AT lichiacheng conservedchargedaminoacidresiduesintheextracellularregionofsodiumiodidesymporterarecriticalforiodidetransportactivity
AT hotinyun conservedchargedaminoacidresiduesintheextracellularregionofsodiumiodidesymporterarecriticalforiodidetransportactivity
AT kaochiahung conservedchargedaminoacidresiduesintheextracellularregionofsodiumiodidesymporterarecriticalforiodidetransportactivity
AT wushihlu conservedchargedaminoacidresiduesintheextracellularregionofsodiumiodidesymporterarecriticalforiodidetransportactivity
AT liangjian conservedchargedaminoacidresiduesintheextracellularregionofsodiumiodidesymporterarecriticalforiodidetransportactivity
AT hsiangchienyun conservedchargedaminoacidresiduesintheextracellularregionofsodiumiodidesymporterarecriticalforiodidetransportactivity