Cargando…
Kinetics of Rhodopsin Deactivation and Its Role in Regulating Recovery and Reproducibility of Rod Photoresponse
The single photon response (SPR) in vertebrate phototransduction is regulated by the dynamics of R(*) during its lifetime, including the random number of phosphorylations, the catalytic activity and the random sojourn time at each phosphorylation level. Because of this randomness the electrical resp...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3002991/ https://www.ncbi.nlm.nih.gov/pubmed/21200415 http://dx.doi.org/10.1371/journal.pcbi.1001031 |
_version_ | 1782193821820387328 |
---|---|
author | Caruso, Giovanni Bisegna, Paolo Lenoci, Leonardo Andreucci, Daniele Gurevich, Vsevolod V. Hamm, Heidi E. DiBenedetto, Emmanuele |
author_facet | Caruso, Giovanni Bisegna, Paolo Lenoci, Leonardo Andreucci, Daniele Gurevich, Vsevolod V. Hamm, Heidi E. DiBenedetto, Emmanuele |
author_sort | Caruso, Giovanni |
collection | PubMed |
description | The single photon response (SPR) in vertebrate phototransduction is regulated by the dynamics of R(*) during its lifetime, including the random number of phosphorylations, the catalytic activity and the random sojourn time at each phosphorylation level. Because of this randomness the electrical responses are expected to be inherently variable. However the SPR is highly reproducible. The mechanisms that confer to the SPR such a low variability are not completely understood. The kinetics of rhodopsin deactivation is investigated by a Continuous Time Markov Chain (CTMC) based on the biochemistry of rhodopsin activation and deactivation, interfaced with a spatio-temporal model of phototransduction. The model parameters are extracted from the photoresponse data of both wild type and mutant mice, having variable numbers of phosphorylation sites and, with the same set of parameters, the model reproduces both WT and mutant responses. The sources of variability are dissected into its components, by asking whether a random number of turnoff steps, a random sojourn time between steps, or both, give rise to the known variability. The model shows that only the randomness of the sojourn times in each of the phosphorylated states contributes to the Coefficient of Variation (CV) of the response, whereas the randomness of the number of R(*) turnoff steps has a negligible effect. These results counter the view that the larger the number of decay steps of R(*), the more stable the photoresponse is. Our results indicate that R(*) shutoff is responsible for the variability of the photoresponse, while the diffusion of the second messengers acts as a variability suppressor. |
format | Text |
id | pubmed-3002991 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-30029912011-01-03 Kinetics of Rhodopsin Deactivation and Its Role in Regulating Recovery and Reproducibility of Rod Photoresponse Caruso, Giovanni Bisegna, Paolo Lenoci, Leonardo Andreucci, Daniele Gurevich, Vsevolod V. Hamm, Heidi E. DiBenedetto, Emmanuele PLoS Comput Biol Research Article The single photon response (SPR) in vertebrate phototransduction is regulated by the dynamics of R(*) during its lifetime, including the random number of phosphorylations, the catalytic activity and the random sojourn time at each phosphorylation level. Because of this randomness the electrical responses are expected to be inherently variable. However the SPR is highly reproducible. The mechanisms that confer to the SPR such a low variability are not completely understood. The kinetics of rhodopsin deactivation is investigated by a Continuous Time Markov Chain (CTMC) based on the biochemistry of rhodopsin activation and deactivation, interfaced with a spatio-temporal model of phototransduction. The model parameters are extracted from the photoresponse data of both wild type and mutant mice, having variable numbers of phosphorylation sites and, with the same set of parameters, the model reproduces both WT and mutant responses. The sources of variability are dissected into its components, by asking whether a random number of turnoff steps, a random sojourn time between steps, or both, give rise to the known variability. The model shows that only the randomness of the sojourn times in each of the phosphorylated states contributes to the Coefficient of Variation (CV) of the response, whereas the randomness of the number of R(*) turnoff steps has a negligible effect. These results counter the view that the larger the number of decay steps of R(*), the more stable the photoresponse is. Our results indicate that R(*) shutoff is responsible for the variability of the photoresponse, while the diffusion of the second messengers acts as a variability suppressor. Public Library of Science 2010-12-16 /pmc/articles/PMC3002991/ /pubmed/21200415 http://dx.doi.org/10.1371/journal.pcbi.1001031 Text en Caruso et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Caruso, Giovanni Bisegna, Paolo Lenoci, Leonardo Andreucci, Daniele Gurevich, Vsevolod V. Hamm, Heidi E. DiBenedetto, Emmanuele Kinetics of Rhodopsin Deactivation and Its Role in Regulating Recovery and Reproducibility of Rod Photoresponse |
title | Kinetics of Rhodopsin Deactivation and Its Role in Regulating Recovery and Reproducibility of Rod Photoresponse |
title_full | Kinetics of Rhodopsin Deactivation and Its Role in Regulating Recovery and Reproducibility of Rod Photoresponse |
title_fullStr | Kinetics of Rhodopsin Deactivation and Its Role in Regulating Recovery and Reproducibility of Rod Photoresponse |
title_full_unstemmed | Kinetics of Rhodopsin Deactivation and Its Role in Regulating Recovery and Reproducibility of Rod Photoresponse |
title_short | Kinetics of Rhodopsin Deactivation and Its Role in Regulating Recovery and Reproducibility of Rod Photoresponse |
title_sort | kinetics of rhodopsin deactivation and its role in regulating recovery and reproducibility of rod photoresponse |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3002991/ https://www.ncbi.nlm.nih.gov/pubmed/21200415 http://dx.doi.org/10.1371/journal.pcbi.1001031 |
work_keys_str_mv | AT carusogiovanni kineticsofrhodopsindeactivationanditsroleinregulatingrecoveryandreproducibilityofrodphotoresponse AT bisegnapaolo kineticsofrhodopsindeactivationanditsroleinregulatingrecoveryandreproducibilityofrodphotoresponse AT lenocileonardo kineticsofrhodopsindeactivationanditsroleinregulatingrecoveryandreproducibilityofrodphotoresponse AT andreuccidaniele kineticsofrhodopsindeactivationanditsroleinregulatingrecoveryandreproducibilityofrodphotoresponse AT gurevichvsevolodv kineticsofrhodopsindeactivationanditsroleinregulatingrecoveryandreproducibilityofrodphotoresponse AT hammheidie kineticsofrhodopsindeactivationanditsroleinregulatingrecoveryandreproducibilityofrodphotoresponse AT dibenedettoemmanuele kineticsofrhodopsindeactivationanditsroleinregulatingrecoveryandreproducibilityofrodphotoresponse |