Cargando…
Fungal-associated NO is involved in the regulation of oxidative stress during rehydration in lichen symbiosis
BACKGROUND: Reactive oxygen species (ROS) are normally produced in respiratory and photosynthetic electron chains and their production is enhanced during desiccation/rehydration. Nitric oxide (NO) is a ubiquitous and multifaceted molecule involved in cell signaling and abiotic stress. Lichens are po...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3003266/ https://www.ncbi.nlm.nih.gov/pubmed/21092214 http://dx.doi.org/10.1186/1471-2180-10-297 |
_version_ | 1782193847871209472 |
---|---|
author | Catalá, Myriam Gasulla, Francisco Pradas del Real, Ana E García-Breijo, Francisco Reig-Armiñana, Jose Barreno, Eva |
author_facet | Catalá, Myriam Gasulla, Francisco Pradas del Real, Ana E García-Breijo, Francisco Reig-Armiñana, Jose Barreno, Eva |
author_sort | Catalá, Myriam |
collection | PubMed |
description | BACKGROUND: Reactive oxygen species (ROS) are normally produced in respiratory and photosynthetic electron chains and their production is enhanced during desiccation/rehydration. Nitric oxide (NO) is a ubiquitous and multifaceted molecule involved in cell signaling and abiotic stress. Lichens are poikilohydrous organisms that can survive continuous cycles of desiccation and rehydration. Although the production of ROS and NO was recently demonstrated during lichen rehydration, the functions of these compounds are unknown. The aim of this study was to analyze the role of NO during rehydration of the lichen Ramalina farinacea (L.) Ach., its isolated photobiont partner Trebouxia sp. and Asterochloris erici (Ahmadjian) Skaloud et Peksa (SAG 32.85 = UTEX 911). RESULTS: Rehydration of R. farinacea caused the release of ROS and NO evidenced by the fluorescent probes DCFH(2)-DA and DAN respectively. However, a minimum in lipid peroxidation (MDA) was observed 2 h post-rehydration. The inhibition of NO in lichen thalli with c-PTIO resulted in increases in both ROS production and lipid peroxidation, which now peaked at 3 h, together with decreases in chlorophyll autofluorescence and algal photobleaching upon confocal laser incidence. Trebouxia sp. photobionts generate peaks of NO-endproducts in suspension and show high rates of photobleaching and ROS production under NO inhibition which also caused a significant decrease in photosynthetic activity of A. erici axenic cultures, probably due to the higher levels of photo-oxidative stress. CONCLUSIONS: Mycobiont derived NO has an important role in the regulation of oxidative stress and in the photo-oxidative protection of photobionts in lichen thalli. The results point to the importance of NO in the early stages of lichen rehydration. |
format | Text |
id | pubmed-3003266 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-30032662010-12-18 Fungal-associated NO is involved in the regulation of oxidative stress during rehydration in lichen symbiosis Catalá, Myriam Gasulla, Francisco Pradas del Real, Ana E García-Breijo, Francisco Reig-Armiñana, Jose Barreno, Eva BMC Microbiol Research Article BACKGROUND: Reactive oxygen species (ROS) are normally produced in respiratory and photosynthetic electron chains and their production is enhanced during desiccation/rehydration. Nitric oxide (NO) is a ubiquitous and multifaceted molecule involved in cell signaling and abiotic stress. Lichens are poikilohydrous organisms that can survive continuous cycles of desiccation and rehydration. Although the production of ROS and NO was recently demonstrated during lichen rehydration, the functions of these compounds are unknown. The aim of this study was to analyze the role of NO during rehydration of the lichen Ramalina farinacea (L.) Ach., its isolated photobiont partner Trebouxia sp. and Asterochloris erici (Ahmadjian) Skaloud et Peksa (SAG 32.85 = UTEX 911). RESULTS: Rehydration of R. farinacea caused the release of ROS and NO evidenced by the fluorescent probes DCFH(2)-DA and DAN respectively. However, a minimum in lipid peroxidation (MDA) was observed 2 h post-rehydration. The inhibition of NO in lichen thalli with c-PTIO resulted in increases in both ROS production and lipid peroxidation, which now peaked at 3 h, together with decreases in chlorophyll autofluorescence and algal photobleaching upon confocal laser incidence. Trebouxia sp. photobionts generate peaks of NO-endproducts in suspension and show high rates of photobleaching and ROS production under NO inhibition which also caused a significant decrease in photosynthetic activity of A. erici axenic cultures, probably due to the higher levels of photo-oxidative stress. CONCLUSIONS: Mycobiont derived NO has an important role in the regulation of oxidative stress and in the photo-oxidative protection of photobionts in lichen thalli. The results point to the importance of NO in the early stages of lichen rehydration. BioMed Central 2010-11-22 /pmc/articles/PMC3003266/ /pubmed/21092214 http://dx.doi.org/10.1186/1471-2180-10-297 Text en Copyright ©2010 Catalá et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<url>http://creativecommons.org/licenses/by/2.0</url>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Catalá, Myriam Gasulla, Francisco Pradas del Real, Ana E García-Breijo, Francisco Reig-Armiñana, Jose Barreno, Eva Fungal-associated NO is involved in the regulation of oxidative stress during rehydration in lichen symbiosis |
title | Fungal-associated NO is involved in the regulation of oxidative stress during rehydration in lichen symbiosis |
title_full | Fungal-associated NO is involved in the regulation of oxidative stress during rehydration in lichen symbiosis |
title_fullStr | Fungal-associated NO is involved in the regulation of oxidative stress during rehydration in lichen symbiosis |
title_full_unstemmed | Fungal-associated NO is involved in the regulation of oxidative stress during rehydration in lichen symbiosis |
title_short | Fungal-associated NO is involved in the regulation of oxidative stress during rehydration in lichen symbiosis |
title_sort | fungal-associated no is involved in the regulation of oxidative stress during rehydration in lichen symbiosis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3003266/ https://www.ncbi.nlm.nih.gov/pubmed/21092214 http://dx.doi.org/10.1186/1471-2180-10-297 |
work_keys_str_mv | AT catalamyriam fungalassociatednoisinvolvedintheregulationofoxidativestressduringrehydrationinlichensymbiosis AT gasullafrancisco fungalassociatednoisinvolvedintheregulationofoxidativestressduringrehydrationinlichensymbiosis AT pradasdelrealanae fungalassociatednoisinvolvedintheregulationofoxidativestressduringrehydrationinlichensymbiosis AT garciabreijofrancisco fungalassociatednoisinvolvedintheregulationofoxidativestressduringrehydrationinlichensymbiosis AT reigarminanajose fungalassociatednoisinvolvedintheregulationofoxidativestressduringrehydrationinlichensymbiosis AT barrenoeva fungalassociatednoisinvolvedintheregulationofoxidativestressduringrehydrationinlichensymbiosis |