Cargando…

Identification of the 3' and 5' terminal sequences of the 8 rna genome segments of european and north american genotypes of infectious salmon anemia virus (an orthomyxovirus) and evidence for quasispecies based on the non-coding sequences of transcripts

BACKGROUND: Infectious salmon anemia (ISA) virus (ISAV) is a pathogen of marine-farmed Atlantic salmon (Salmo salar); a disease first diagnosed in Norway in 1984. This virus, which was first characterized following its isolation in cell culture in 1995, belongs to the family Orthomyxoviridae, genus,...

Descripción completa

Detalles Bibliográficos
Autores principales: Kulshreshtha, Vikas, Kibenge, Molly, Salonius, Kira, Simard, Nathalie, Riveroll, Angela, Kibenge, Frederick
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3003268/
https://www.ncbi.nlm.nih.gov/pubmed/21092282
http://dx.doi.org/10.1186/1743-422X-7-338
_version_ 1782193848359845888
author Kulshreshtha, Vikas
Kibenge, Molly
Salonius, Kira
Simard, Nathalie
Riveroll, Angela
Kibenge, Frederick
author_facet Kulshreshtha, Vikas
Kibenge, Molly
Salonius, Kira
Simard, Nathalie
Riveroll, Angela
Kibenge, Frederick
author_sort Kulshreshtha, Vikas
collection PubMed
description BACKGROUND: Infectious salmon anemia (ISA) virus (ISAV) is a pathogen of marine-farmed Atlantic salmon (Salmo salar); a disease first diagnosed in Norway in 1984. This virus, which was first characterized following its isolation in cell culture in 1995, belongs to the family Orthomyxoviridae, genus, Isavirus. The Isavirus genome consists of eight single-stranded RNA segments of negative sense, each with one to three open reading frames flanked by 3' and 5' non-coding regions (NCRs). Although the terminal sequences of other members of the family Orthomyxoviridae such as Influenzavirus A have been extensively analyzed, those of Isavirus remain largely unknown, and the few reported are from different ISAV strains and on different ends of the different RNA segments. This paper describes a comprehensive analysis of the 3' and 5' end sequences of the eight RNA segments of ISAV of both European and North American genotypes, and evidence of quasispecies of ISAV based on sequence variation in the untranslated regions (UTRs) of transcripts. RESULTS: Two different ISAV strains and two different RNA preparations were used in this study. ISAV strain ADL-PM 3205 ISAV-07 (ADL-ISAV-07) of European genotype was the source of total RNA extracted from ISAV-infected TO cells, which contained both viral mRNA and cRNA. ISAV strain NBISA01 of North American genotype was the source of vRNA extracted from purified virus. The NCRs of each segment were identified by sequencing cDNA prepared by three different methods, 5' RACE (Rapid amplification of cDNA ends), 3' RACE, and RNA ligation mediated PCR. Sequence analysis of five clones each derived from one RT-PCR product from each NCR of ISAV transcripts of segments 1 to 8 revealed significant heterogeneity among the clones of the same segment end, providing unequivocal evidence for presence of intra-segment ISAV quasispecies. Both RNA preparations (mRNA/cRNA and vRNA) yielded complementary sequence information, allowing the simultaneous identification and confirmation of the 3' and 5' NCR sequences of the 8 RNA genome segments of both genotypes of ISAV. The 3' sequences of the mRNA transcripts of ADL-ISAV-07 terminated 13-18 nucleotides from the full 3' terminus of cRNA, continuing as a poly(A) tail, which corresponded with the location of the polyadenylation signal. The lengths of the 3' and 5' NCRs of the vRNA were variable in the different genome segments, but the terminal 7 and 11 nucleotides of the 3' and 5' ends, respectively, were highly conserved among the eight genomic segments of ISAV. The first three nucleotides at the 3' end are GCU-3' (except in segment 5 with ACU-3'), whereas at the 5' end are 5'-AGU with the polyadenylation signal of 3-5 uridines 13-15 nucleotides downstream of the 5' end terminus of the vRNA. Exactly the same features were found in the respective complementary 5' and 3' end NCR sequences of the cRNA transcripts of ADL-ISAV-07, indicating that the terminal sequences of the 8 RNA genome segments are highly conserved among the two ISAV genotypes. The 5' NCR sequences of segments 1, 2, 3, 5, and 7, and the 3' NCR sequences of segments 3 and 4 cRNA were 100% identical in the two genotypes, and the 3' NCR sequences of segment 5 cRNA was the most divergent, with a sequence identity of 77.2%. CONCLUSIONS: We report for the first time, the presence of intra-segment ISAV quasispecies, based on sequence variation in the NCR sequences of transcripts. In addition, this is the first report of a comprehensive unambiguous analysis of the 3' and 5' NCR sequences of all 8 RNA genome segments from two strains of ISAV representing the two genotypes of ISAV. Because most ISAV sequences are of cDNA to mRNA, they do not contain the 3' end sequences, which are removed during polyadenylation of the mRNA transcripts. We report for the first time the ISAV consensus sequence CA(T)/(A)TTTTTACT-3' (in the message sense 5'-3') in all segments of both ISAV genotypes.
format Text
id pubmed-3003268
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-30032682010-12-18 Identification of the 3' and 5' terminal sequences of the 8 rna genome segments of european and north american genotypes of infectious salmon anemia virus (an orthomyxovirus) and evidence for quasispecies based on the non-coding sequences of transcripts Kulshreshtha, Vikas Kibenge, Molly Salonius, Kira Simard, Nathalie Riveroll, Angela Kibenge, Frederick Virol J Research BACKGROUND: Infectious salmon anemia (ISA) virus (ISAV) is a pathogen of marine-farmed Atlantic salmon (Salmo salar); a disease first diagnosed in Norway in 1984. This virus, which was first characterized following its isolation in cell culture in 1995, belongs to the family Orthomyxoviridae, genus, Isavirus. The Isavirus genome consists of eight single-stranded RNA segments of negative sense, each with one to three open reading frames flanked by 3' and 5' non-coding regions (NCRs). Although the terminal sequences of other members of the family Orthomyxoviridae such as Influenzavirus A have been extensively analyzed, those of Isavirus remain largely unknown, and the few reported are from different ISAV strains and on different ends of the different RNA segments. This paper describes a comprehensive analysis of the 3' and 5' end sequences of the eight RNA segments of ISAV of both European and North American genotypes, and evidence of quasispecies of ISAV based on sequence variation in the untranslated regions (UTRs) of transcripts. RESULTS: Two different ISAV strains and two different RNA preparations were used in this study. ISAV strain ADL-PM 3205 ISAV-07 (ADL-ISAV-07) of European genotype was the source of total RNA extracted from ISAV-infected TO cells, which contained both viral mRNA and cRNA. ISAV strain NBISA01 of North American genotype was the source of vRNA extracted from purified virus. The NCRs of each segment were identified by sequencing cDNA prepared by three different methods, 5' RACE (Rapid amplification of cDNA ends), 3' RACE, and RNA ligation mediated PCR. Sequence analysis of five clones each derived from one RT-PCR product from each NCR of ISAV transcripts of segments 1 to 8 revealed significant heterogeneity among the clones of the same segment end, providing unequivocal evidence for presence of intra-segment ISAV quasispecies. Both RNA preparations (mRNA/cRNA and vRNA) yielded complementary sequence information, allowing the simultaneous identification and confirmation of the 3' and 5' NCR sequences of the 8 RNA genome segments of both genotypes of ISAV. The 3' sequences of the mRNA transcripts of ADL-ISAV-07 terminated 13-18 nucleotides from the full 3' terminus of cRNA, continuing as a poly(A) tail, which corresponded with the location of the polyadenylation signal. The lengths of the 3' and 5' NCRs of the vRNA were variable in the different genome segments, but the terminal 7 and 11 nucleotides of the 3' and 5' ends, respectively, were highly conserved among the eight genomic segments of ISAV. The first three nucleotides at the 3' end are GCU-3' (except in segment 5 with ACU-3'), whereas at the 5' end are 5'-AGU with the polyadenylation signal of 3-5 uridines 13-15 nucleotides downstream of the 5' end terminus of the vRNA. Exactly the same features were found in the respective complementary 5' and 3' end NCR sequences of the cRNA transcripts of ADL-ISAV-07, indicating that the terminal sequences of the 8 RNA genome segments are highly conserved among the two ISAV genotypes. The 5' NCR sequences of segments 1, 2, 3, 5, and 7, and the 3' NCR sequences of segments 3 and 4 cRNA were 100% identical in the two genotypes, and the 3' NCR sequences of segment 5 cRNA was the most divergent, with a sequence identity of 77.2%. CONCLUSIONS: We report for the first time, the presence of intra-segment ISAV quasispecies, based on sequence variation in the NCR sequences of transcripts. In addition, this is the first report of a comprehensive unambiguous analysis of the 3' and 5' NCR sequences of all 8 RNA genome segments from two strains of ISAV representing the two genotypes of ISAV. Because most ISAV sequences are of cDNA to mRNA, they do not contain the 3' end sequences, which are removed during polyadenylation of the mRNA transcripts. We report for the first time the ISAV consensus sequence CA(T)/(A)TTTTTACT-3' (in the message sense 5'-3') in all segments of both ISAV genotypes. BioMed Central 2010-11-23 /pmc/articles/PMC3003268/ /pubmed/21092282 http://dx.doi.org/10.1186/1743-422X-7-338 Text en Copyright ©2010 Kulshreshtha et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<url>http://creativecommons.org/licenses/by/2.0</url>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Kulshreshtha, Vikas
Kibenge, Molly
Salonius, Kira
Simard, Nathalie
Riveroll, Angela
Kibenge, Frederick
Identification of the 3' and 5' terminal sequences of the 8 rna genome segments of european and north american genotypes of infectious salmon anemia virus (an orthomyxovirus) and evidence for quasispecies based on the non-coding sequences of transcripts
title Identification of the 3' and 5' terminal sequences of the 8 rna genome segments of european and north american genotypes of infectious salmon anemia virus (an orthomyxovirus) and evidence for quasispecies based on the non-coding sequences of transcripts
title_full Identification of the 3' and 5' terminal sequences of the 8 rna genome segments of european and north american genotypes of infectious salmon anemia virus (an orthomyxovirus) and evidence for quasispecies based on the non-coding sequences of transcripts
title_fullStr Identification of the 3' and 5' terminal sequences of the 8 rna genome segments of european and north american genotypes of infectious salmon anemia virus (an orthomyxovirus) and evidence for quasispecies based on the non-coding sequences of transcripts
title_full_unstemmed Identification of the 3' and 5' terminal sequences of the 8 rna genome segments of european and north american genotypes of infectious salmon anemia virus (an orthomyxovirus) and evidence for quasispecies based on the non-coding sequences of transcripts
title_short Identification of the 3' and 5' terminal sequences of the 8 rna genome segments of european and north american genotypes of infectious salmon anemia virus (an orthomyxovirus) and evidence for quasispecies based on the non-coding sequences of transcripts
title_sort identification of the 3' and 5' terminal sequences of the 8 rna genome segments of european and north american genotypes of infectious salmon anemia virus (an orthomyxovirus) and evidence for quasispecies based on the non-coding sequences of transcripts
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3003268/
https://www.ncbi.nlm.nih.gov/pubmed/21092282
http://dx.doi.org/10.1186/1743-422X-7-338
work_keys_str_mv AT kulshreshthavikas identificationofthe3and5terminalsequencesofthe8rnagenomesegmentsofeuropeanandnorthamericangenotypesofinfectioussalmonanemiavirusanorthomyxovirusandevidenceforquasispeciesbasedonthenoncodingsequencesoftranscripts
AT kibengemolly identificationofthe3and5terminalsequencesofthe8rnagenomesegmentsofeuropeanandnorthamericangenotypesofinfectioussalmonanemiavirusanorthomyxovirusandevidenceforquasispeciesbasedonthenoncodingsequencesoftranscripts
AT saloniuskira identificationofthe3and5terminalsequencesofthe8rnagenomesegmentsofeuropeanandnorthamericangenotypesofinfectioussalmonanemiavirusanorthomyxovirusandevidenceforquasispeciesbasedonthenoncodingsequencesoftranscripts
AT simardnathalie identificationofthe3and5terminalsequencesofthe8rnagenomesegmentsofeuropeanandnorthamericangenotypesofinfectioussalmonanemiavirusanorthomyxovirusandevidenceforquasispeciesbasedonthenoncodingsequencesoftranscripts
AT riverollangela identificationofthe3and5terminalsequencesofthe8rnagenomesegmentsofeuropeanandnorthamericangenotypesofinfectioussalmonanemiavirusanorthomyxovirusandevidenceforquasispeciesbasedonthenoncodingsequencesoftranscripts
AT kibengefrederick identificationofthe3and5terminalsequencesofthe8rnagenomesegmentsofeuropeanandnorthamericangenotypesofinfectioussalmonanemiavirusanorthomyxovirusandevidenceforquasispeciesbasedonthenoncodingsequencesoftranscripts