Cargando…

Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2

TET2 is a close relative of TET1, an enzyme that converts 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC) in DNA1,2. The gene encoding TET2 resides at chromosome 4q24, in a region showing recurrent microdeletions and copy-neutral loss of heterozygosity (CN-LOH) in patients with diverse my...

Descripción completa

Detalles Bibliográficos
Autores principales: Ko, Myunggon, Huang, Yun, Jankowska, Anna M., Pape, Utz J., Tahiliani, Mamta, Bandukwala, Hozefa S., An, Jungeun, Lamperti, Edward D., Koh, Kian Peng, Ganetzky, Rebecca, Liu, X. Shirley, Aravind, L., Agarwal, Suneet, Maciejewski, Jaroslaw P., Rao, Anjana
Formato: Texto
Lenguaje:English
Publicado: 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3003755/
https://www.ncbi.nlm.nih.gov/pubmed/21057493
http://dx.doi.org/10.1038/nature09586
Descripción
Sumario:TET2 is a close relative of TET1, an enzyme that converts 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC) in DNA1,2. The gene encoding TET2 resides at chromosome 4q24, in a region showing recurrent microdeletions and copy-neutral loss of heterozygosity (CN-LOH) in patients with diverse myeloid malignancies3. Somatic TET2 mutations are frequently observed in myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), MDS/MPN overlap syndromes including chronic myelomonocytic leukemia (CMML), acute myeloid leukemias (AML) and secondary AML (sAML)4–12. We show here that TET2 mutations associated with myeloid malignancies compromise TET2 catalytic activity. Bone marrow samples from patients with TET2 mutations displayed uniformly low levels of 5-hmC in genomic DNA compared to bone marrow samples from healthy controls. Moreover, small hairpin RNA (shRNA)-mediated depletion of Tet2 in mouse haematopoietic precursors skewed their differentiation towards monocyte/macrophage lineages in culture. There was no significant difference in DNA methylation between bone marrow samples from patients with high 5-hmC versus healthy controls, but samples from patients with low 5-hmC showed hypomethylation relative to controls at the majority of differentially-methylated CpG sites. Our results demonstrate that TET2 is important for normal myelopoiesis, and suggest that disruption of TET2 enzymatic activity favours myeloid tumorigenesis. Measurement of 5-hmC levels in myeloid malignancies may prove valuable as a diagnostic and prognostic tool, to tailor therapies and assess responses to anti-cancer drugs.