Cargando…

Epigenomics in cancer management

The identification of all epigenetic modifications implicated in gene expression is the next step for a better understanding of human biology in both normal and pathological states. This field is referred to as epigenomics, and it is defined as epigenetic changes (ie, DNA methylation, histone modifi...

Descripción completa

Detalles Bibliográficos
Autor principal: Costa, Fabricio F
Formato: Texto
Lenguaje:English
Publicado: Dove Medical Press 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3004578/
https://www.ncbi.nlm.nih.gov/pubmed/21188117
http://dx.doi.org/10.2147/CMR.S7280
Descripción
Sumario:The identification of all epigenetic modifications implicated in gene expression is the next step for a better understanding of human biology in both normal and pathological states. This field is referred to as epigenomics, and it is defined as epigenetic changes (ie, DNA methylation, histone modifications and regulation by noncoding RNAs such as microRNAs) on a genomic scale rather than a single gene. Epigenetics modulate the structure of the chromatin, thereby affecting the transcription of genes in the genome. Different studies have already identified changes in epigenetic modifications in a few genes in specific pathways in cancers. Based on these epigenetic changes, drugs against different types of tumors were developed, which mainly target epimutations in the genome. Examples include DNA methylation inhibitors, histone modification inhibitors, and small molecules that target chromatin-remodeling proteins. However, these drugs are not specific, and side effects are a major problem; therefore, new DNA sequencing technologies combined with epigenomic tools have the potential to identify novel biomarkers and better molecular targets to treat cancers. The purpose of this review is to discuss current and emerging epigenomic tools and to address how these new technologies may impact the future of cancer management.