Cargando…
Gene Regulatory Networks from Multifactorial Perturbations Using Graphical Lasso: Application to the DREAM4 Challenge
A major challenge in the field of systems biology consists of predicting gene regulatory networks based on different training data. Within the DREAM4 initiative, we took part in the multifactorial sub-challenge that aimed to predict gene regulatory networks of size 100 from training data consisting...
Autores principales: | Menéndez, Patricia, Kourmpetis, Yiannis A. I., ter Braak, Cajo J. F., van Eeuwijk, Fred A. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3004794/ https://www.ncbi.nlm.nih.gov/pubmed/21188141 http://dx.doi.org/10.1371/journal.pone.0014147 |
Ejemplares similares
-
Gene Ontology consistent protein function prediction: the FALCON algorithm applied to six eukaryotic genomes
por: Kourmpetis, Yiannis AI, et al.
Publicado: (2013) -
Bayesian Markov Random Field Analysis for Protein Function Prediction
Based on Network Data
por: Kourmpetis, Yiannis A. I., et al.
Publicado: (2010) -
Inference of radio-responsive gene regulatory networks using the graphical lasso algorithm
por: Oh, Jung Hun, et al.
Publicado: (2014) -
Application of graphical lasso in estimating network structure in gene set
por: Huang, Yu-Jyun, et al.
Publicado: (2020) -
Tailored graphical lasso for data integration in gene network reconstruction
por: Lingjærde, Camilla, et al.
Publicado: (2021)