Cargando…
Predicting cytotoxicity from heterogeneous data sources with Bayesian learning
BACKGROUND: We collected data from over 80 different cytotoxicity assays from Pfizer in-house work as well as from public sources and investigated the feasibility of using these datasets, which come from a variety of assay formats (having for instance different measured endpoints, incubation times a...
Autores principales: | Langdon, Sarah R, Mulgrew, Joanna, Paolini, Gaia V, van Hoorn, Willem P |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3004804/ https://www.ncbi.nlm.nih.gov/pubmed/21143909 http://dx.doi.org/10.1186/1758-2946-2-11 |
Ejemplares similares
-
Prediction of RNA subcellular localization: Learning from heterogeneous data sources
por: Savulescu, Anca Flavia, et al.
Publicado: (2021) -
Bayesian analysis of multi-source data
por: Bhat, P C, et al.
Publicado: (1997) -
Learning from Heterogeneous Data Sources: An Application in Spatial Proteomics
por: Breckels, Lisa M., et al.
Publicado: (2016) -
CombFunc: predicting protein function using heterogeneous data sources
por: Wass, Mark N., et al.
Publicado: (2012) -
Integration of Multiple Genomic Data Sources in a Bayesian Cox Model for Variable Selection and Prediction
por: Treppmann, Tabea, et al.
Publicado: (2017)