Cargando…
Functional data analysis for identifying nonlinear models of gene regulatory networks
BACKGROUND: A key problem in systems biology is estimating dynamical models of gene regulatory networks. Traditionally, this has been done using regression or other ad-hoc methods when the model is linear. More detailed, realistic modeling studies usually employ nonlinear dynamical models, which lea...
Autores principales: | Summer, Georg, Perkins, Theodore J |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3005930/ https://www.ncbi.nlm.nih.gov/pubmed/21143801 http://dx.doi.org/10.1186/1471-2164-11-S4-S18 |
Ejemplares similares
-
Comparison of probabilistic Boolean network and dynamic Bayesian network approaches for inferring gene regulatory networks
por: Li, Peng, et al.
Publicado: (2007) -
Time lagged information theoretic approaches to the reverse engineering of gene regulatory networks
por: Chaitankar, Vijender, et al.
Publicado: (2010) -
Nonlinear gene cluster analysis with labeling for microarray gene expression data in organ development
por: Ehler, Martin, et al.
Publicado: (2011) -
Identifying regulational alterations in gene regulatory networks by state space representation of vector autoregressive models and variational annealing
por: Kojima, Kaname, et al.
Publicado: (2012) -
Stability of building gene regulatory networks with sparse autoregressive models
por: Rajapakse, Jagath C, et al.
Publicado: (2011)