Cargando…

Coxiella burnetii Transcriptional Analysis Reveals Serendipity Clusters of Regulation in Intracellular Bacteria

Coxiella burnetii, the causative agent of the zoonotic disease Q fever, is mainly transmitted to humans through an aerosol route. A spore-like form allows C. burnetii to resist different environmental conditions. Because of this, analysis of the survival strategies used by this bacterium to adapt to...

Descripción completa

Detalles Bibliográficos
Autores principales: Leroy, Quentin, Lebrigand, Kevin, Armougom, Fabrice, Barbry, Pascal, Thiéry, Richard, Raoult, Didier
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3006202/
https://www.ncbi.nlm.nih.gov/pubmed/21203564
http://dx.doi.org/10.1371/journal.pone.0015321
_version_ 1782194170869317632
author Leroy, Quentin
Lebrigand, Kevin
Armougom, Fabrice
Barbry, Pascal
Thiéry, Richard
Raoult, Didier
author_facet Leroy, Quentin
Lebrigand, Kevin
Armougom, Fabrice
Barbry, Pascal
Thiéry, Richard
Raoult, Didier
author_sort Leroy, Quentin
collection PubMed
description Coxiella burnetii, the causative agent of the zoonotic disease Q fever, is mainly transmitted to humans through an aerosol route. A spore-like form allows C. burnetii to resist different environmental conditions. Because of this, analysis of the survival strategies used by this bacterium to adapt to new environmental conditions is critical for our understanding of C. burnetii pathogenicity. Here, we report the early transcriptional response of C. burnetii under temperature stresses. Our data show that C. burnetii exhibited minor changes in gene regulation under short exposure to heat or cold shock. While small differences were observed, C. burnetii seemed to respond similarly to cold and heat shock. The expression profiles obtained using microarrays produced in-house were confirmed by quantitative RT-PCR. Under temperature stresses, 190 genes were differentially expressed in at least one condition, with a fold change of up to 4. Globally, the differentially expressed genes in C. burnetii were associated with bacterial division, (p)ppGpp synthesis, wall and membrane biogenesis and, especially, lipopolysaccharide and peptidoglycan synthesis. These findings could be associated with growth arrest and witnessed transformation of the bacteria to a spore-like form. Unexpectedly, clusters of neighboring genes were differentially expressed. These clusters do not belong to operons or genetic networks; they have no evident associated functions and are not under the control of the same promoters. We also found undescribed but comparable clusters of regulation in previously reported transcriptomic analyses of intracellular bacteria, including Rickettsia sp. and Listeria monocytogenes. The transcriptomic patterns of C. burnetii observed under temperature stresses permits the recognition of unpredicted clusters of regulation for which the trigger mechanism remains unidentified but which may be the result of a new mechanism of epigenetic regulation.
format Text
id pubmed-3006202
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-30062022011-01-03 Coxiella burnetii Transcriptional Analysis Reveals Serendipity Clusters of Regulation in Intracellular Bacteria Leroy, Quentin Lebrigand, Kevin Armougom, Fabrice Barbry, Pascal Thiéry, Richard Raoult, Didier PLoS One Research Article Coxiella burnetii, the causative agent of the zoonotic disease Q fever, is mainly transmitted to humans through an aerosol route. A spore-like form allows C. burnetii to resist different environmental conditions. Because of this, analysis of the survival strategies used by this bacterium to adapt to new environmental conditions is critical for our understanding of C. burnetii pathogenicity. Here, we report the early transcriptional response of C. burnetii under temperature stresses. Our data show that C. burnetii exhibited minor changes in gene regulation under short exposure to heat or cold shock. While small differences were observed, C. burnetii seemed to respond similarly to cold and heat shock. The expression profiles obtained using microarrays produced in-house were confirmed by quantitative RT-PCR. Under temperature stresses, 190 genes were differentially expressed in at least one condition, with a fold change of up to 4. Globally, the differentially expressed genes in C. burnetii were associated with bacterial division, (p)ppGpp synthesis, wall and membrane biogenesis and, especially, lipopolysaccharide and peptidoglycan synthesis. These findings could be associated with growth arrest and witnessed transformation of the bacteria to a spore-like form. Unexpectedly, clusters of neighboring genes were differentially expressed. These clusters do not belong to operons or genetic networks; they have no evident associated functions and are not under the control of the same promoters. We also found undescribed but comparable clusters of regulation in previously reported transcriptomic analyses of intracellular bacteria, including Rickettsia sp. and Listeria monocytogenes. The transcriptomic patterns of C. burnetii observed under temperature stresses permits the recognition of unpredicted clusters of regulation for which the trigger mechanism remains unidentified but which may be the result of a new mechanism of epigenetic regulation. Public Library of Science 2010-12-21 /pmc/articles/PMC3006202/ /pubmed/21203564 http://dx.doi.org/10.1371/journal.pone.0015321 Text en Leroy et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Leroy, Quentin
Lebrigand, Kevin
Armougom, Fabrice
Barbry, Pascal
Thiéry, Richard
Raoult, Didier
Coxiella burnetii Transcriptional Analysis Reveals Serendipity Clusters of Regulation in Intracellular Bacteria
title Coxiella burnetii Transcriptional Analysis Reveals Serendipity Clusters of Regulation in Intracellular Bacteria
title_full Coxiella burnetii Transcriptional Analysis Reveals Serendipity Clusters of Regulation in Intracellular Bacteria
title_fullStr Coxiella burnetii Transcriptional Analysis Reveals Serendipity Clusters of Regulation in Intracellular Bacteria
title_full_unstemmed Coxiella burnetii Transcriptional Analysis Reveals Serendipity Clusters of Regulation in Intracellular Bacteria
title_short Coxiella burnetii Transcriptional Analysis Reveals Serendipity Clusters of Regulation in Intracellular Bacteria
title_sort coxiella burnetii transcriptional analysis reveals serendipity clusters of regulation in intracellular bacteria
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3006202/
https://www.ncbi.nlm.nih.gov/pubmed/21203564
http://dx.doi.org/10.1371/journal.pone.0015321
work_keys_str_mv AT leroyquentin coxiellaburnetiitranscriptionalanalysisrevealsserendipityclustersofregulationinintracellularbacteria
AT lebrigandkevin coxiellaburnetiitranscriptionalanalysisrevealsserendipityclustersofregulationinintracellularbacteria
AT armougomfabrice coxiellaburnetiitranscriptionalanalysisrevealsserendipityclustersofregulationinintracellularbacteria
AT barbrypascal coxiellaburnetiitranscriptionalanalysisrevealsserendipityclustersofregulationinintracellularbacteria
AT thieryrichard coxiellaburnetiitranscriptionalanalysisrevealsserendipityclustersofregulationinintracellularbacteria
AT raoultdidier coxiellaburnetiitranscriptionalanalysisrevealsserendipityclustersofregulationinintracellularbacteria