Cargando…
Probabilistic principal component analysis for metabolomic data
BACKGROUND: Data from metabolomic studies are typically complex and high-dimensional. Principal component analysis (PCA) is currently the most widely used statistical technique for analyzing metabolomic data. However, PCA is limited by the fact that it is not based on a statistical model. RESULTS: H...
Autores principales: | Nyamundanda, Gift, Brennan, Lorraine, Gormley, Isobel Claire |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3006395/ https://www.ncbi.nlm.nih.gov/pubmed/21092268 http://dx.doi.org/10.1186/1471-2105-11-571 |
Ejemplares similares
-
MetSizeR: selecting the optimal sample size for metabolomic studies using an analysis based approach
por: Nyamundanda, Gift, et al.
Publicado: (2013) -
polyClustR: defining communities of reconciled cancer subtypes with biological and prognostic significance
por: Eason, Katherine, et al.
Publicado: (2018) -
Principal component gene set enrichment (PCGSE)
por: Frost, H. Robert, et al.
Publicado: (2015) -
An Eigenvalue test for spatial principal component analysis
por: Montano, V., et al.
Publicado: (2017) -
Incorporating biological information in sparse principal component analysis with application to genomic data
por: Li, Ziyi, et al.
Publicado: (2017)