Cargando…

Permeability Evaluation Through Chitosan Membranes Using Taguchi Design

In the present study, chitosan membranes capable of imitating permeation characteristics of diclofenac diethylamine across animal skin were prepared using cast drying method. The effect of concentration of chitosan, concentration of cross-linking agent (NaTPP), crosslinking time was studied using Ta...

Descripción completa

Detalles Bibliográficos
Autores principales: Sharma, Vipin, Marwaha, Rakesh Kumar, Dureja, Harish
Formato: Texto
Lenguaje:English
Publicado: Österreichische Apotheker-Verlagsgesellschaft 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3007611/
https://www.ncbi.nlm.nih.gov/pubmed/21179329
http://dx.doi.org/10.3797/scipharm.1009-08
Descripción
Sumario:In the present study, chitosan membranes capable of imitating permeation characteristics of diclofenac diethylamine across animal skin were prepared using cast drying method. The effect of concentration of chitosan, concentration of cross-linking agent (NaTPP), crosslinking time was studied using Taguchi design. Taguchi design ranked concentration of chitosan as the most important factor influencing the permeation parameters of diclofenac diethylamine. The flux of the diclofenac diethylamine solution through optimized chitosan membrane (T9) was found to be comparable to that obtained across rat skin. The mathematical model developed using multilinear regression analysis can be used to formulate chitosan membranes that can mimic the desired permeation characteristics. The developed chitosan membranes can be utilized as a substitute to animal skin for in vitro permeation studies.