Cargando…
Optimized data fusion for K-means Laplacian clustering
Motivation: We propose a novel algorithm to combine multiple kernels and Laplacians for clustering analysis. The new algorithm is formulated on a Rayleigh quotient objective function and is solved as a bi-level alternating minimization procedure. Using the proposed algorithm, the coefficients of ker...
Autores principales: | Yu, Shi, Liu, Xinhai, Tranchevent, Léon-Charles, Glänzel, Wolfgang, Suykens, Johan A. K., De Moor, Bart, Moreau, Yves |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3008636/ https://www.ncbi.nlm.nih.gov/pubmed/20980271 http://dx.doi.org/10.1093/bioinformatics/btq569 |
Ejemplares similares
-
L(2)-norm multiple kernel learning and its application to biomedical data fusion
por: Yu, Shi, et al.
Publicado: (2010) -
Gene prioritization and clustering by multi-view text mining
por: Yu, Shi, et al.
Publicado: (2010) -
Combining Max pooling-Laplacian theory and k-means clustering for novel camouflage pattern design
por: Wan, Minhao, et al.
Publicado: (2022) -
ReLiance: a machine learning and literature-based prioritization of receptor—ligand pairings
por: Iacucci, Ernesto, et al.
Publicado: (2012) -
A bioinformatics e-dating story: computational prediction and prioritization of receptor-ligand pairs
por: Iacucci, Ernesto, et al.
Publicado: (2012)