Cargando…
Classification of protein sequences by means of irredundant patterns
BACKGROUND: The classification of protein sequences using string algorithms provides valuable insights for protein function prediction. Several methods, based on a variety of different patterns, have been previously proposed. Almost all string-based approaches discover patterns that are not "in...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3009487/ https://www.ncbi.nlm.nih.gov/pubmed/20122187 http://dx.doi.org/10.1186/1471-2105-11-S1-S16 |
_version_ | 1782194689635516416 |
---|---|
author | Comin, Matteo Verzotto, Davide |
author_facet | Comin, Matteo Verzotto, Davide |
author_sort | Comin, Matteo |
collection | PubMed |
description | BACKGROUND: The classification of protein sequences using string algorithms provides valuable insights for protein function prediction. Several methods, based on a variety of different patterns, have been previously proposed. Almost all string-based approaches discover patterns that are not "independent, " and therefore the associated scores overcount, a multiple number of times, the contribution of patterns that cover the same region of a sequence. RESULTS: In this paper we use a class of patterns, called irredundant, that is specifically designed to address this issue. Loosely speaking the set of irredundant patterns is the smallest class of "independent" patterns that can describe all common patterns in two sequences, thus they avoid overcounting. We present a novel discriminative method, called Irredundant Class, based on the statistics of irredundant patterns combined with the power of support vector machines. CONCLUSION: Tests on benchmark data show that Irredundant Class outperforms most of the string algorithms previously proposed, and it achieves results as good as current state-of-the-art methods. Moreover the footprints of the most discriminative irredundant patterns can be used to guide the identification of functional regions in protein sequences. |
format | Text |
id | pubmed-3009487 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-30094872010-12-23 Classification of protein sequences by means of irredundant patterns Comin, Matteo Verzotto, Davide BMC Bioinformatics Research BACKGROUND: The classification of protein sequences using string algorithms provides valuable insights for protein function prediction. Several methods, based on a variety of different patterns, have been previously proposed. Almost all string-based approaches discover patterns that are not "independent, " and therefore the associated scores overcount, a multiple number of times, the contribution of patterns that cover the same region of a sequence. RESULTS: In this paper we use a class of patterns, called irredundant, that is specifically designed to address this issue. Loosely speaking the set of irredundant patterns is the smallest class of "independent" patterns that can describe all common patterns in two sequences, thus they avoid overcounting. We present a novel discriminative method, called Irredundant Class, based on the statistics of irredundant patterns combined with the power of support vector machines. CONCLUSION: Tests on benchmark data show that Irredundant Class outperforms most of the string algorithms previously proposed, and it achieves results as good as current state-of-the-art methods. Moreover the footprints of the most discriminative irredundant patterns can be used to guide the identification of functional regions in protein sequences. BioMed Central 2010-01-18 /pmc/articles/PMC3009487/ /pubmed/20122187 http://dx.doi.org/10.1186/1471-2105-11-S1-S16 Text en Copyright ©2010 Comin and Verzotto; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Comin, Matteo Verzotto, Davide Classification of protein sequences by means of irredundant patterns |
title | Classification of protein sequences by means of irredundant patterns |
title_full | Classification of protein sequences by means of irredundant patterns |
title_fullStr | Classification of protein sequences by means of irredundant patterns |
title_full_unstemmed | Classification of protein sequences by means of irredundant patterns |
title_short | Classification of protein sequences by means of irredundant patterns |
title_sort | classification of protein sequences by means of irredundant patterns |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3009487/ https://www.ncbi.nlm.nih.gov/pubmed/20122187 http://dx.doi.org/10.1186/1471-2105-11-S1-S16 |
work_keys_str_mv | AT cominmatteo classificationofproteinsequencesbymeansofirredundantpatterns AT verzottodavide classificationofproteinsequencesbymeansofirredundantpatterns |