Cargando…
Amino acid classification based spectrum kernel fusion for protein subnuclear localization
BACKGROUND: Prediction of protein localization in subnuclear organelles is more challenging than general protein subcelluar localization. There are only three computational models for protein subnuclear localization thus far, to the best of our knowledge. Two models were based on protein primary seq...
Autores principales: | Mei, Suyu, Fei, Wang |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3009488/ https://www.ncbi.nlm.nih.gov/pubmed/20122188 http://dx.doi.org/10.1186/1471-2105-11-S1-S17 |
Ejemplares similares
-
Multi-Label Multi-Kernel Transfer Learning for Human Protein Subcellular Localization
por: Mei, Suyu
Publicado: (2012) -
Correction: Multi-Label Multi-Kernel Transfer Learning for Human Protein Subcellular Localization
por: Mei, Suyu
Publicado: (2013) -
Correction: Multi-Label Multi-Kernel Transfer Learning for Human Protein Subcellular Localization
por: Mei, Suyu
Publicado: (2013) -
Protein subnuclear localization based on a new effective representation and intelligent kernel linear discriminant analysis by dichotomous greedy genetic algorithm
por: Wang, Shunfang, et al.
Publicado: (2018) -
An SVM-based system for predicting protein subnuclear localizations
por: Lei, Zhengdeng, et al.
Publicado: (2005)