Cargando…
Decoding HMMs using the k best paths: algorithms and applications
BACKGROUND: Traditional algorithms for hidden Markov model decoding seek to maximize either the probability of a state path or the number of positions of a sequence assigned to the correct state. These algorithms provide only a single answer and in practice do not produce good results. RESULTS: We e...
Autores principales: | Brown, Daniel G, Golod, Daniil |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3009499/ https://www.ncbi.nlm.nih.gov/pubmed/20122200 http://dx.doi.org/10.1186/1471-2105-11-S1-S28 |
Ejemplares similares
-
More accurate recombination prediction in HIV-1 using a robust decoding algorithm for HMMs
por: Truszkowski, Jakub, et al.
Publicado: (2011) -
Algorithms for incorporating prior topological information in HMMs: application to transmembrane proteins
por: Bagos, Pantelis G, et al.
Publicado: (2006) -
Transposon identification using profile HMMs
por: Edlefsen, Paul T, et al.
Publicado: (2010) -
Predicting conserved protein motifs with Sub-HMMs
por: Horan, Kevin, et al.
Publicado: (2010) -
AlignHUSH: Alignment of HMMs using structure and hydrophobicity information
por: Krishnadev, Oruganty, et al.
Publicado: (2011)