Cargando…
New decoding algorithms for Hidden Markov Models using distance measures on labellings
BACKGROUND: Existing hidden Markov model decoding algorithms do not focus on approximately identifying the sequence feature boundaries. RESULTS: We give a set of algorithms to compute the conditional probability of all labellings "near" a reference labelling λ for a sequence y for a variet...
Autores principales: | Brown, Daniel G, Truszkowski, Jakub |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3009513/ https://www.ncbi.nlm.nih.gov/pubmed/20122214 http://dx.doi.org/10.1186/1471-2105-11-S1-S40 |
Ejemplares similares
-
Efficient decoding algorithms for generalized hidden Markov model gene finders
por: Majoros, William H, et al.
Publicado: (2005) -
More accurate recombination prediction in HIV-1 using a robust decoding algorithm for HMMs
por: Truszkowski, Jakub, et al.
Publicado: (2011) -
A new decoding algorithm for hidden Markov models improves the prediction of the topology of all-beta membrane proteins
por: Fariselli, Piero, et al.
Publicado: (2005) -
A new algorithm to train hidden Markov models for biological sequences with partial labels
por: Li, Jiefu, et al.
Publicado: (2021) -
A hidden Markov model for decoding and the analysis of replay in spike trains
por: Box, Marc, et al.
Publicado: (2016)